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New Exactly Solvable Model of Strongly Correlated Electrons Motivated by
High-T, Superconductivity
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6'e present a new model describing strongly correlated electrons on a general d-dimensional lattice. It
is an extended Hubbard model and it contains the t-J model as a special case. The model naturally de-
scribes local electron pairs, which can move coherently at arbitrary momentum. By using an g-pairing
mechanism we can construct eigenstates of the Hamiltonian with oA'-diagonal long-range order. In the
attractive case the exact ground state is superconducting in any number of dimensions. On a one-
dimensional lattice, the model is exactly solvable by Bethe ansatz.

PACS numbers: 71.20.Ad, 75.10.Jm

The study of strongly correlated electrons on a lattice is
an important tool in theoretical condensed-matter physics
in general, and in the study of high-T, superconductivity
in particular. Two we11-studied models are the Hubbard
model and the t-J model. On a one-dimensional lattice
these models are both exactly solvable by Bethe ansatz.
In this Letter we propose a new model, which is again
solvable in one dimension, and which combines and ex-
tends some of the interesting features of the Hubbard
model and the t-J model.

Electrons on a lattice are described by operators cj
j= I, . . . , L, o = t, ), where L is the total number of lat-
tice sites. These are canonical Fermi operators with an-
ticommutation relations given by {c;,cj,t =b; ~b, . The
state i0& (the Fock vacuum) satisfies c; i0&=0. At a
given lattice site i there are four possible electronic states:

io&, it&, = , io&,

ii&, =.,', io&, it i&, =.,',.,', io&.

By n; =c; ~; we denote the number operator for elec-
trons with spin o on site i and we write n;=n; t+n; ~.

The spin operators S =Qj-~Sj, St, and S',

Sj=ct 1cj1, S'j =cj lcj1, Sj =
2 (nj1 n&1), (2)

form an SU(2) algebra and they commute with the Ham-
iltonians that we consider below. (We shall always give

local expressions Oj for symmetry generators, implying
that the global ones are obtained as 8 =+j-~ej.)

The Hubbard model Hamiltonian can be written as

H Hubbard g g (c c„+c c )
(jk) cr

L

+ U g (n.
1
——) (n, 1 , ),

where the first summation runs over all nearest-neighbor
pairs (jk&. It contains kinetic (hopping) terms for the
electrons and an on-site interaction term for electron
pairs. An interesting feature (on a bipartite periodic lat-
tice) is the so-called rl-pairing symmetry [1,2], which in-
volves operators rlH, rltt, and riH which form another
SU(2) algebra, and which commute with the Hamiltoni-
an (3). Using this symmetry one can, starting from an
eigenstate itjt& of the Hamiltonian, create a new eigen-
state rlttiVt&, which contains an additional local electron
pair of momentum tr. The spin SU(2) algebra (2) and
the rl-pairing SU(2) algebras together form an SO(4)
symmetry algebra. In one dimension, the Hubbard model
is solvable by Bethe ansatz [3].

In the j-J model, there is a kinematical constraint
which forbids the occurrence of two electrons on the
same lattice site. On this restricted Hilbert space the
t JHamiltonian (wi-th t =1, J =2) acts as H'

gtjk)Hj f, with

Hj'$= Q (Qjt Qk +Qk QJ ) —2[Sj'Si', + —,
' (Sj Sp+SjSk) —

—,
' (1 —nj —nk) —

4 njnk],
~~ f

(4)

where we defined

Qj 1
= (1 —nj 1)ej 1, Qj 1

= (1 —nj t)cj 1,

and the operators Sj, Sj, and Sj are as in (2). The t-J
model (4) is supersymmetric and the spin SU(2) symme-

try algebra gets enlarged to the superalgebra SU(li2)
[4,5] (see [6] for the description and classification of the
classical Lie superalgebras). The generators of this sym-

metry algebra are S, S t, S', Q1, Q1, Q1, Q1, and
T=2L —Pf-~n~ In one dimension .t.he supersymmetric

i t-J model (4) is exactly solvable by Bethe ansatz [7-9].
Before we present the Harniltonian of the new model,

we give some motivation, which is based on what we
know about the materials that exhibit high-T, supercon-
ductivity. It has been found that the electrons in these
materials form "Cooper pairs,

" which are spin singlets,
and that these pairs are much smaller than in the tradi-
tional superconductors. As a limiting case one can con-
sider models which have electron pairs of size zero, i.e.,
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pairs that are localized on single lattice sites. We will

call such localized electron pairs localons.
In the t-J model localons are ruled out by the kinemat-

ical constraint on the space of states, and in the Hubbard
model only local pairs of momentum x exist. Below we

shall see that in our new model localons can move

coherently with arbitrary momentum. Apart from these
local pairs, the new model may also have bound states
that are finite-size electron pairs.

Let us now present the Hamiltonian of the new model

on a general d-dimensional lattice. We write it as

L L

+P g tlj+h g (/lj 1 nj l)
j I j I

where H is given by

H'= —QHj'k,
(jk)

'"'
(j,k) are nearest neighbors, with

(6)

(7)

Hj /t ck fcj f(l ljll nk l)+cj fck f(l llj l ll/t l)+ck lcj l(1 nj —
f nk—f)+cj lck l(l nj f

——
nk f)p t t

+ 2 (llj 1)(llk I )+Cj fCj lCk lCk, f +Cj' lCj fCk fCk, l 2 (nj, f nj, l)(nk, f ltkl),t

cj lcj fck fck l cj fcj lck lck 1+ (nj f 2 )(/tj 1 2 )+ (ilk f 2 )(nk l 2 ) .t I 1 (8)

This Hamiltonian contains kinetic terms and interaction
terms that combine those of the Hubbard and of the t-J
model. The second term in (6) is the on-site Hubbard in-
teraction term (notice that it also gets a contribution
from H ). The third and fourth terms in (6) introduce a
chemical potential jt and a magnetic field h. Roughly
speaking, the new model can be viewed as a modified
Hubbard model with additional nearest-neighbor interac-
tions similar to those in the t-J model.

The Hamiltonian Ho is invariant under spin-reflection

cj f cj l and under Particle-hole rePlacement cj cj
In addition to the spin SU(2) generators (2), the follow-

ing operators commute with H .
rt pairing S-U(2).—The generators are rt, gt, and rt'.

rtj -cj,fcj,f, rj, =c, lc, f, rt, = —
—, n, + 2 . (9)

Together with the spin SU(2) algebra (2), this gives an
SO(4) algebra which is similar to the one for the Hub-
bard model. This symmetry makes it possible to general-
ize the g-pairing mechanism, which was developed for the
Hubbard model in [2], to the new model.

Supersymmetries. —There are eight supersymmetries
in total: (it, g f(t i, and (/f ,given in (5) and the opera-
tors Q and Q:

Qj, f nj, lcj.ft Qj, l nj, fcj, l . (10)

These generators, together with the operator gjL-l I

(which is constant and equal to L), form the superalge-
bra SU(2~2). [Like SU(4), this algebra has fifteen gen-
erators, eight of which are fermionic. In the fundamental
representation, the generators can be represented as 4 x 4
supermatrices with vanishing supertrace [6].]

The symmetries of the Hamiltonian H can be made
manifest as follows. We first add one more generator to
the symmetry algebra, which is

l6

Hj k
= g K'~Jj gJk//

a,P I

(12)

-t - -t
je kcr+ k~ je jcr ko ko jcr

a f, )

+ (2 rtj rtf, + rtj /fk + tfj rt k )

—(2Sj'Sk+Sj Sk+SjSk )+X)+Xk .

lt is easily checked that this expression agrees with the
formula for Hjok in (8). The expression (12) immediately
makes it clear that H commutes with all sixteen genera-
tors of U(2)2).

We would like to stress that the appearance of the
algebra U(2(2) in the model is not too surprising: On
each lattice site there are four electronic states (I), two
of which are fermionic. The supergroup U(2)2) is the
group of all unitary rotations of these four states into one
another. Our Hamiltonian H has been chosen such that
it commutes with the entire algebra U(2~2) and is there-
fore very natural. The analogous construction for U(1(2)
leads to the t JHamiltonian -(4), and for U(2) it leads to
the spin- 2 XXX Heisenberg model.

The spectrum of the Hamiltonian H is symmetric
around zero. This follows from the discrete symmetry

cj ) cj ) for which H —H ~

There is a further aspect of H that deserves to be
mentioned: The terms HJ k act as graded permutations
of the electron states (1) at sites j and k. By "graded"
we mean that there is an extra minus sign if the two
states that are permuted are both (fermionic) single-

2961

i
This extends the superalgebra SU(2~2) to U(2~2). We
denote the generators of this algebra by J„where
a 1,2, . . . , 16. We now introduce an invariant, nonde-

generate two-index tensor, denoted by K'/', which is the
inverse of K,// str(JQ~) (str denotes supertrace), where
the J, are 4X4 supermatrices in the fundamental repre-
sentation. Using this, we can cast HJ k in a group-
theoretical form, as follows:
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electron states. For example,

Hj Qcj f (0) ci f ]0) Hj Qcj fcQ f (0) cj' ice f (0)

(i4)

In this respect, the new model generalizes the spin-2
XXX model and the r Jm-odel (4). The nearest-neighbor
Hamiltonians of these models have a similar interpreta-
tion as graded permutations of the basic states, which are
[( f&, ~ J&] for the spin-2 XXX model and [[0),~t&, ~f&[ for
the t Jm-odel. Lattice Hamiltonians that act like (grad-
ed) permutations were first considered by Sutherland in

[g].
We define the number operators Nt, Nf (the number of

single electrons with given spin) and N~ (the number of
localons) by

L L L

lVf+NI gnftN, l+NI +ni f, N(= gn~, tn~ fj 1 j~l j I

(is)

and we write N, =Nt+Nf for the total number of single
electrons. The fact that H is a permutation makes it
clear that these number operators commute with H, so
that H can be diagonalized within a sector with given
numbers Nt, N~, and NI. This implies that the terms
proportional to U, p, and h in (6), which break the sym-
metry U(2~2), will not affect the solvability of the model
in one dimension.

In the sectors without localons H reduces to the t-J
Hamiltonian (4). (This is clear from the fact that they
both act as permutations. ) The new model reduces to the
spin- 2 XXX model in the sector with only vacancies and

localons, and similarly in the (half-filled) sector with one
single electron on each site.

Let us now briefly discuss some physical aspects of the
new model. We first remark that we can always (for gen-
eral lattices in an arbitrary number of dimensions) con-
struct a number of exact eigenstates of the Hamiltonian
which show off-diagonal long-range order (ODLRO),
which is characteristic for superconductivity [10]. For
this we follow the construction which was developed for
the Hubbard model by Yang in [2]. The state O' N

=(rlt) )0) is an eigenstate of the Hamiltonian with ener-

gy E 2pN+UL/4 —M, where M is the total number of
nearest-neighbor links (jk) in the lattice. Following [2],
we compute the following off-diagonal matrix element
(k Al) of the reduced density matrix p2..

&(k, J )(k, t ) ip2i(l, t )(l, J )) =

N(L —lV) ( )
L (L —I )

The fact that this off-diagonal matrix element is constant
for large distances (j—k( establishes the property of
ODLRO for the states +N.

An important observation is that for the attractive case
(U (0) with zero magnetic field (h =0), the ground
state in the sector with an even number 2N of electrons is

precisely the state +z (g ) (0). It can be rigorously
shown that within each of these sectors (positive density
corresponds to negative p) this ground state is unique.
We may thus conclude that in the attractive case our new

model exhibits superconductivity.
The local electron pairs that participate in the q pair-

ing have momentum zero. However, the model also ad-
mits localons that move with arbitrary rnomenturn. This
follows from the fact that Hj I, acts as a permutation of
the electronic states (I ) on neighboring sites: Because of
this localons cannot decay and move coherently. On a d-
dimensional square lattice (with lattice spacing a) the
wave function g, exp(ix k)c~t tcf 1 ~0), which describes a
single localon of momentum k over the bare vacuum, is

an exact eigenfunction of the Hamiltonian (6) of energy

d

E =2d —2 g cos(k~a ) +UL/4+ 2p —M .
m l

Multilocalon wave functions, as well as wave functions
with single electrons, exist but cannot easily be written
down for higher-dimensional lattices. However, in one
dimension the model is exactly solvable by Bethe ansatz
(BA), and we can obtain explicit expressions for general
eigenstates of the Hamiltonian. We think that it is

worthwhile to study this exact solution, and that this will

lead to a better understanding of the higher-dimensional
model as well.

We will here briefly summarize the results of the exact
solution in one dimension; the details are deferred to a
separate publication [11]. The exact solution starts from
the observation that the Hamiltonian is a graded permu-
tation (14) of four states, of which two are fermionic and

two are bosonic. The BA analysis for Hamiltonians
which are graded permutations was first considered by
Sutherland in [8]; see also [12]. The method of solution

is the algebraic version of the "nested Bethe ansatz" [13]
(for an introduction to the algebraic BA, see [14]). Each
step of the nesting involves the introduction of a set of
spectral parameters, which are in our case kj, A, I, ', and

where j=l, . . . , (lV, +NI), k =I, . . . , N„and l
=1, . . . , N).

For each choice of a set of rapidities we can construct
an eigenstate of the Hamiltonian H in the sector
specified by N&, N„and N~, with energy F. given by

/VS+ IVI

E = g I/(A + —') —L.
j t

The boundary conditions for these eigenstates lead to

the following set of Bethe equations for the rapidities kj,., -d. 7
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w+w . w—i/2 ' 'k —7, ' —i '
7 ~

—X- —i/2
& +t/2 '-», —&J-+t' k'-i Ak' , )-I+, i/2

i &i

~")-) '+ /2 "I ~")-) '"+ /2
g k l' '

U'-i X ' —
)1, - —i/2 t'-i A,

' —
A, ~

—i/2

U
' ' '

g
+e

)(
(~ ) g (2) + '/2

(-) &'"—Z(2) —I t -i )t(I' —X(2) —i/2I' I 1 k' I l
I'~l

(19)
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