
VOLUME 68, NUMBER 19 PH YSICAL REVIEW LETTERS 11 MAY 1992

Simulation of Si Clusters via Langevin Molecular Dynamics with Quantum Forces
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We present a dynamical-stochastic scheme to determine from first principles the structure of low-

symmetry atomic systems. The method is based on Langevin molecular dynamics and quantum-
mechanical interactions derived from self-consistent local-density-functional calculations. It can be used
for insulating as well as metallic and charged systems. Here we examine small neutral and charged Si
clusters, and show that the ground-state structures can be eSciently obtained with this approach.

PACS numbers: 71.10.+x, 36.40.+d

In condensed matter physics, structural determination
of complex nonperiodic systems, such as clusters or ex-
tended defects in solids, remains a serious challenge.
Conventional theoretical methods are hindered by the
large number of degrees of freedom and the lack of sym-
metry or periodicity in these systems. Computer experi-
ments exploiting the simulated annealing strategy [I] can
overcome such obstacles. The challenge with this type of
extensive numerical investigation is to reconcile an accu-
rate description of the potential-energy surface and an
appropriate configuration-space sampling for global ge-
ometry optimization.

Different simulation schemes have been used in the
past with empirical descriptions. Simulated annealing
was originally proposed [I] with the Monte Carlo (MC)
approach. This is a robust scheme well suited for com-
plex energy surfaces, but in general the MC approach is
not the most efficient. Traditional (Newtonian) molecu-
lar dynamics (MD) is more efficient than the MC ap-
proach when the potential-energy surface is smooth, but
is also more likely to be aff'ected by local minima in com-
plex energy surfaces. Recently, Biswas and Hamann [2]
proposed Langevin molecular dynamics (LMD) for simu-
lated annealing. Within a force field description, this ap-
proach has been applied to clusters [2-4] and defects [5],
and proved to be efficient even in difficult cases [4].

Here we combine for the first time LMD with realistic
quantum-mechanical interactions obtained in the local-
density-functional (LDF) framework. Car and Parrinello
[6] coupled LDF and MD simulations using a fictitious
dynamics for the electrons and classical dynamics for the
ions, simultaneously minimizing the energy with respect
to the electronic and ionic degrees of freedom. This ap-
proach has been exploited, in particular, to determine the
ground-state structure of small clusters [7-13]. We
present and test a different scheme to perform global
geometry optimization based on first-principles LDF cal-
culations. We exploit LMD for simulated annealing and
determine the atomic interactions by means of efficient
self-consistent pseudopotential plane-wave calculations.
The method can be used for insulating as mell as metallic
and charged systems. We have applied this approach to

small neutral and negatively charged Si„clusters (n (6),
and successfully reproduced their known geometry [14,
15]. In addition, we have examined Si6 and Si6 clusters,
which are of special interest since they correspond to a
magic number in the mass spectrum of Si clusters. Si6
has been shown recently to be the major fragmentation
product of large clusters [16]. The annealing runs for Si6
lead to different isomers which are degenerate within the
accuracy of LDA, and can be obtained by relatively small

distortions from the same structure.
In the simulations, the ionic positions RI evolve accord-

ing to the Langevin equation [2]

MtRI = —&R,E({RJ[)—yMIRt+Gt,

where E([RI[) is the total energy of the system and Mt is

the ionic mass. The last two terms on the right-hand side
of Eq. (I) are the Langevin dissipation and ffuctuation
forces defined, respectively, by the friction coefficient y
and the random Gaussian variables [Gt] with a white

spectrum:

(Gt (t)&=O,

(Gt'(t)GJ'(t')) =2yMtktt TbtJ8(t I ) .

The angular brackets denote ensemble or time averages,
and a stands for the Cartesian coordinate. The coeffi-
cient on the right-hand side of Eq. (2) ensures that the
formalism is consistent with the Auctuation-dissipation
theorem [17].

We determine the force VIR,E in Eq. (I) by e—fficient
self-consistent pseudopotential plane-wave calculations.
We use a fast iterative diagonalization procedure [18],
and exploit the Broyen mixing scheme [19] to accelerate
self-consistency. The self-consistent deformation charge
density at each LMD step is also used to extrapolate the
charge density at the next time step. Metallic systems
are conveniently handled by means of the Gaussian
broadening scheme [20,21]. In this way we can treat
clusters which have occupied and empty orbitals that are
degenerate or quasidegenerate, and properly include in

the sampling metallic configurations which may occur in

a cluster at T & 0. This scheme also accelerates the self-
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consistency. The quantum-mechanical forces are easily
evaluated with the Gaussian broadening scheme [22].
For charged clusters the broadening technique can be ex-
ploited to include a partially filled electronic level. The
neutrality of the supercell is maintained in this case by
introducing a compensating jellium background [23].

LMD offers several advantages as a general tool for
simulated annealing, since the computer annealing simu-

lation does not have to follow explicitly each time step of
the natural evolution of the physical system. The anneal-

ing can be significantly faster if the artificial constraints
in the simulation lead to acceptable shortcuts relative to
the natural evolution. In LMD simulations, the particles
are subjected to random and dissipative forces which are
related and controlled by the temperature through the
fluctuation-dissipation theorem. The temperature of the
system can be changed without rescaling the velocities, as
normally done in Newtonian MD. Energy is free to flow

in and out of the system, as it should. For simulated an-

nealing LMD combines some of the advantages of MD
and MC simulations. As opposed to MC simulations,
LMD and MD sample the configurational space by col-
lectively moving the particles, and move faster to the
minima by exploiting the gradient. The shaking due to
random forces in LMD helps the system to escape from
metastable states in a manner reminiscent of "uphill"
moves in MC simulations. With empirical potentials,
LMD has been used, for instance, to anneal silicon clus-
ters with up to 32 atoms [2,3]. Recent work [4] has
shown the efficiency of this method for carbon clusters for
which MD with empirical approaches was found to be
impractical [24], and the MC approach had been the only
reasonable alternative [24,25].

In our simulations for Si clusters, we use a soft ionic
pseudopotential generated with the method of Troullier
and Martins [26] from the atomic 3s 3p 3d ground-
state configuration, and cast into the Kleinman-Bylander
separable form [27] with s and d nonlocality. This poten-
tial reproduced accurately the structural and elastic prop-
erties of bulk Si. Exchange and correlation effects are in-
cluded with the Ceperley-Alder functional [28] in the
parametrized form given by Perdew and Zunger [29].
The simulations have been carried out in a simple cubic
supercell with an edge a =18 a.u. , and an energy cutoff of
7 Ry for the plane-wave basis set. Changes in the bond
lengths using a larger cell (a =24 a.u. ) and a higher ener-

gy cutoff (12 Ry) were found to be less than 1%. Only
the I point is considered for reciprocal space sampling, as
is appropriate for a cluster simulation, and we use an
electronic level Gaussian broadening of 0.01 Ry. As a
Langevin friction parameter we use y =5x10 a.u. ,
which is similar to the value employed in the previous
studies [3]. The equation of motion, Eq. (1), is integrat-
ed with the algorithm given in Ref. [30] using a time step
of 8x 10 ' sec (-330 a.u. ).

For the simulated ground-state search of Si„(n=4,
5,6) we heated the system up to 3000 K, and cooled it
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FIG. 1. LDA ground-state geometry of the neutral Si2-Si5
clusters. The bonds lengths are in A. The results from the
Hartree-Fock calculations [14] are also given in parentheses.
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FIG. 2. Binding energy of Si& during a typical Langevin an-
nealing run from 3000 to 300 K. The time step hi is 8x 10
sec. The initial, final, and some of the intermediate config-
urations of the cluster are also sho~n. Bonds are dragon for in-
teratomic distances smaller than 2.60 A.
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down to 300 K with six temperature steps, in an approxi-
mately linear annealing schedule, and using about 100 in-

tegrations per temperature step. The system was then
quenched by a conjugate gradient minimization. The re-
sulting geometries and bond lengths or angles for Si4 and

Sip together with those of the smaller Si aggregates ob-
tained within the LDA are sho~n in Fig. 1. These results
are in good agreement with the Hartree-Fock (HF) cal-
culations including correlation effects by perturbation
theory [14] and consistent with the LDA ground-state
structures determined previously [8,31].

A typical annealing for Si6 is shown in Fig. 2. The ini-
tial random geometry, the final structure, and a few



VOLUME 68, NUMBER 19 PH YSICAL REVIEW LETTERS 11 MA+ 1992

TABLE I. LDA bond lengths (in A) and angles for

Siq -Sis . The bonds are labeled according to Fig. 1. The re-
sults of the Hartree-Fock (HF) calculations [l5] are also given.

Sip (tl„)
Si3 (Bq)

Si4

Sip

Bond (angle)

d), Q

d)p

d), 2

d), 3

d)p
dp, 3

LDA

2. 15
2.29
59'
2.31
2.35
2.32
2.70

2.20
2.32
57
2.32
2.37
2.34
2.75

representative examples of the structures occurring dur-
ing the anneal are also shown in Fig. 2. We notice, in

particular, that a triangular prism occurred in the early
stage of the formation of the cluster. This structural unit
has been found to be a basic element [8,321 for several
clusters with n & 8. We find as lowest-energy structures
two isomers which are degenerate within the accuracy of
the LDA. These structures are a bicapped tetrahedron
and an edge-capped trigonal bipyramid which subse-
quently relaxes to a distorted octahedron (see Fig. 2).
HF calculations [32] yield binding energies for these two
structures which are also within 0.01 eV/atom of each
other. In Ref. [32] the distorted octahedron and the bi-
capped tetrahedron were found to relax to the edge-
capped trigonal bipyramidal structure, predicted as the
ground state.

The negatively charged Si„clusters (n ( 6) have struc-
tures similar to those of the neutral clusters shown in Fig.
1. The optimized structural parameters for the Si„
clusters are given in Table I together with those of the
HF calculations [[5]. The results obtained here with a
fictitious neutralizing background in the supercell are in

surprisingly good agreement with the HF results. We
have also determined the structure of Si6+ using the
same thermal treatment as for Si6. In this case, we find
the edge-capped trigonal bipyramid as the final structure
of the annealing, which is consistent with the result of the
HF calculations [14].

There are diAerent motivations for performing self-
consistent calculations at each time step in LMD and not
using a fictitious electron dynamics. The random forces
introduced in the simulations are useful for shaking the
ions out of metastable states. However, their eAect on
the evolution of the electronic states, if not decoupled
from the ionic motion, is undesirable and could even be
counterproductive. In Ref. [33], ab initio finite-temper-
ature MD simulations were performed for the first time
without using a fictitious molecular dynamics for the
electronic degrees of freedom. The numerical eAort in

self-consistently solving the Kohn-Sham equations at
each time step using an efficient iterative diagonalization
scheme was found to be comparable to the eAort involved
in Car-Parrinello simulation, mainly because the time

step of the fictitious electron dynamics for adiabatic
motion [34] is 1 to 2 orders of magnitude smaller than in

simulations involving only ionic dynamics. More recent-
ly, another scheme has been proposed to perform ab initio
MD without the fictitious electron dynamics [35].

The larger time step which can be used in simulations
decoupling electronic and ionic dynamics essentially com-
pensates for the number of operations necessary to
achieve self-consistency at each time step. For the Si6
and Si6+ simulations a total of about 80 matrix-vector
multiplications were performed at each LMD time step
for the diagonalization and self-consistency. Our time
step is about 60 times larger than in the simulated an-
nealing [8] for Si clusters using the Car-Parrinello
method, in which a single matrix-vector multiplication is

performed at each step. The computational burden for
one LMD time period, as measured by the number of
matrix-vector multiplications, is thus comparable in the
two simulations. For systems with a vanishing gap the
original Car-Parrinello method [6] cannot be applied
straightforwardly. The time step has to be reduced and
additional minimization of the electronic parameters has
to be performed to remain close to the Born-Oppen-
heimer surface.

We would like to stress that the Langevin quantum
molecular dynamics presented here can also be used to
perform finite-temperature simulations and evaluate
properties as a function of temperature. For instance,
LMD is an ideal tool to study the properties of clusters in

the buA'er gas in which they are usually grown in prac-
tice, since the random and friction forces can simulate
collision and dissipative effects with the gas molecules.
The method can also be used in the simulation of sur-

faces, or deposition of atoms on surfaces. A temperature
gradient perpendicular to the surface can be easily intro-
duced by means of the Langevin forces. With this ap-
proach one can take into account the effect of the energy
exchange between the adatoms or surface atoms and the
bulk material in an approximate, but realistic way.
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