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Critical Dynamics, Spinodal Decomposition, and Conservation Laws
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A simple acceleration algorithm for Ising systems with conserved magnetization (model B) is present-
ed. The dynamical critical exponent and the domain growth exponent in spinodal decomposition are
found to be equal to those observed for model A systems with no conservation law. Our results demon-
strate that systems with global conservation laws are in the same dynamical universality class as systems
with no conservation laws.

PACS numbers: 64.60.Fr, 05.50.+q, 64.60.Ht, 75.40.Mg

There are three principal themes in this Letter. First, a
new acceleration algorithm is proposed for Ising spin sys-
tems having a conserved magnetization (model B) [1,2].
Physical arguments (for a one-dimensional system) and
detailed computer simulations (in two dimensions) show
that the dynamic critical exponent z (defined by the rela-
tion r-L', where r is the correlation time and L the
linear dimension of the system at criticality) for this algo-
rithm is the same as that obtained for model A, a system
with no conservation laws. Second, we have used our al-
gorithm to study the dynamics of spinodal decomposition
[3] of a 2D Ising system with conserved magnetization
following the quench from a high-temperature homogene-
ous phase into the two-phase coexistence region. We find
that in the late-time scaling regime, the exponent n

characterizing the growth of the characteristic domain
size R (R-t") is the same as that for a model A system
(n =

& ) and diFerent from the conventional model B re-
sult (n =

3 ). Third, our results are consistent with re-
cent predictions by Bray based on renormalization-group
arguments [4-6]. They thus have a bearing on the recent
controversy between Bray and Tamayo and Klein [7,8]
(TK). We have studied one of the two versions of the TK
model and find that the TK exponent is equal to the mod-
el A result, in contradiction to their 2D computer-
simulation results. Our results show that global conser-
vation laws are irrelevant in determining the dynamical
universality class, as argued recently by Bray [4-6].

Our algorithm for the Ising system is a generalization
of Glauber dynamics for model A—it consists of single
spin flips governed by the usual Metropolis [9] rules. The
global conservation of magnetization at a desired value
Mo (model B) is enforced by a Creutz "demon" or bag
[10]. Spin flips are only allowed if the total sample mag-
netization after the spin flip, M, lies in the range
Mo —8 ~ M ~ No+8. Thus our algorithm smoothly ex-
trapolates from model A (unbounded b) to model B
(b=0). In practice, all our calculations have been car-
ried out with MD=0, b=2. Our principal result is that
the exponents z and n are independent of whether 8=2 or
8 is unbounded, and correspond to the model A results.
Note that b =2 in the thermodynamic limit is a conserved

magnetization system.
Dynamical critical exponent. For d—=l, the value of

z may be obtained using random-walk arguments, once
the fastest way for the motion of the domain wall has
been identified. The physical arguments of Cordery,
Sarker, and Tobochnik [11] are applicable in a straight-
forward manner to our generalized algorithm and yield
z 2 z~. (In both our algorithm and model A, the
correlation time r is the time for a domain wall to move a
distance equal to the correlation length (. This random
walk takes a time of order ( leading to z =2. )

For d =2, we have carried out detailed Monte Carlo
simulations for a sequence of square lattices of sides 16,
24, 32, 48, 64, 96, and 128. Each lattice was sampled for
10 lattice updates (except for L =128 for which 400000
updates were used) and an ensemble of ten statistically
independent lattices were considered for each size. The
energy-energy correlation function c(t) =([E(t)—&E)]
& [E(0)—(E)])/((E —(E)) ) was calculated For .long
enough times, the correlation function has a simple ex-
ponential decay:

c(t)=ae "
The region between when the initial transients have de-
cayed and before the statistical noise grows too big is con-
sidered for a nonlinear fit of the above form and an ex-
traction of r. Typically, the data fit was carried out in
the range e (c(t) (e . A typical fit is shown in

Fig. 1. The scaling of i with sample size L gives the
dynamical critical exponent z:

r =L'.
Our fit (Fig. 2) gives z =2.13~0.07 and is consistent
with that expected for model A [12,13].

Domain growth scaling in spinodal decomposition.—We have carried out ten independent runs on a
256x256 lattice starting from a random state with M =0
and quenching instantaneously to T =0.96T,. The
characteristic length scale of the domain R is taken to be

R =2m/k =2x„S(k)dk/„kS(k)dk,
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FIG. 1. Correlation function for the demon algorithm with
8=2. The data are the average of ten independent runs each of
106 lattice updates. The line is a nonlinear fit by an exponential
over the range e 6(c(l) (e

FIG. 3. Domain size R(r) after quenching a 256X 256 lattice
to 0.96T, vs r '~ for model A (b=~) and the demon algorithm
(b=2).

where S(k) is the spherically averaged structure factor
[l4]. Figure 3 shows a plot of R vs t 'i for both our algo-
rithm and for model A dynamics. The deviations from a
linear behavior at large t are due to finite-size effects.
Both algorithms are consistent with R-t" with n = &,
the accepted value for model A dynamics.

Tamayo Klein a-lgorithms We.—note that recently TK
have proposed two algorithms for Ising systems with glo-
bally conserved magnetization. These are similar and in-
volve simultaneous flips of pairs of spins according to ei-
ther Kawasaki spin exchange [15] at arbitrary range or
using a Creutz domain rather than purely single spin
flips. In one dimension, for their algorithm z =3 and is

greater than that for model A (z =2). Monte Carlo cal-
culations by TK in two dimensions are suggestive of
z =2 —g= 4. Strikingly, this value of z is lower than
that expected for model A (zz = 2.18) and thereby

In (L)
FIG. 2. Correlation time r as a function of system size for

the demon with b=2 (solid circles) and the TK algorithm
(open circles).

violates the recent prediction based on renormalization-
group arguments presented by Bray [zTx =max(z~, 2
—r)) =z~]. Our algorithm is a variant of the TK
algorithms —unlike their case of flips of spin pairs, we at-
tempt a single spin flip. On physical grounds, one would

expect the z for our algorithm to be equal to zTq, since
our z =z~ and we expect that zTx =z~. In order to verify
this, we have carried out an analysis of the TK algorithm
in d =2. Specifically, for an infinite-range Kawasaki
spin-exchange algorithm, the dynamical critical exponent
is found to be equal to 2.25+'0. 12 (consistent with z~),
as shown in Fig. 2. This value is inconsistent with the
earlier estimate due to TK and is in accord with the pre-
diction of Bray.

In summary, we have presented a simple generalization
of model A dynamics that extrapolates from a system
with no conservation laws to one with a conserved magne-
tization. In the latter limiting case, our analysis has
shown that both the dynamical critical exponent and the
domain growth scaling exponent in spinodal decomposi-
tion are the same as in model A (even though the magne-
tization conservation law is enforced). Our results show

that global conservation laws do nor change the dynami-
cal universality class. Rather, our results for the ex-
ponents are in accord with the renorrnalization-group ar-
guments and bounds of Bray. Indeed, according to these
bounds, our algorithm is the best that one may do within

the realm of single spin flips. It remains a challenge to
work out the analog of the Swendsen-Wang algorithm
[l6] involving flips of large clusters for systems with con-
served magnetization.

We are indebted to Alan Bray for stimulating discus-
sions. This work was supported by grants from the
Petroleum Research Fund administered by the American
Chemical Society and the OSce of Naval Research.
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