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Microscopic Theory of Orientational Disorder and the Orientational Phase Transition in Solid C6ti
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'At'e have developed a microscopic theory which describes the orientational dynamics of C60 molecules

in the face-centered-cubic phase of C60 fullerite. The molecular interaction potential and the crystal-
field potential are formulated in terms of symmetry-adapted rotator functions. The phase transition to
the Pa3 structure is driven by an active multipolar mode of T2g symmetry belonging to the I 10 mani-

fold. The Birman criterion is satisfied. The transition is found to be of first order.

PACS numbers: 61.50.—f, 64.60.Cn, 81.30.Hd

C60 fullerite is the only known crystalline material [1]
which consists of quasispherical homonuclear molecules.
Diffraction experiments [2] have shown that at ambient
temperature (T) the crystal structure is face centered cu-
bic (fcc), and NMR spectroscopy [3] and coherent quasi-
elastic neutron scattering [4] have demonstrated that the
orientations of the molecules are dynamically disordered.
Thermodynamic measurements [5,6] and synchrotron x-

ray diffraction results [6] reveal a first-order phase transi-
tion at the unexpectedly high temperature T, =250 K.
The orientationally ordered phase has space group Pa3,
with molecules located on four different cubic sublattices
[7,8]. Theoretical work [9] has demonstrated the math-
ematical compatibility of the icosahedral shape of the Cso
molecule with the low-T structure, and a Landau free en-

ergy based on the order-parameter components of the or-
dered structure has been proposed [9]. Molecular-
dynamics studies have led to the development of im-

proved intermolecular potentials [10].
In this paper we develop a microscopic theory which

describes the dynamic orientational disorder of the high-
T phase (space group Fm3m) and the transition to the
orientationally ordered Pa3 structure. In order to take
into account the symmetries of the molecule and of the
molecular sites in the crystal we will use concepts from
the theory of orientationally disordered crystals [11-13].
So far these concepts have only been applied to small
molecules of low symmetry. We will see that the large
number of atoms in the C69 molecule, and its unusually
high symmetry, lead to qualitatively new results.

The C60 molecule, treated as a rigid body, has the sym-
metry of a truncated icosahedron [14]. The atomic nuclei
are distributed on a spherical shell. The position of the
vth nucleus with respect to the molecular center of mass
is given by the vector d(Q„). Here (d( =3.52 A is an
atom's distance from the molecular center and 0„
—= (8„,&„) denotes its orientation. To start with we con-
sider the molecule in its "standard orientation" [Q„],
v 1-60, where three twofold axes of the molecule coin-
cide with the cubic crystal axes. The orientational densi-
ty distribution is expanded in terms of spherical harmon-

ics Yt (Q„). Molecular symmetry implies that nonzero
terms are those with 1=0,6, 10, . . . . Furthermore, for a
given I, only certain linear combinations of YI occur.
For each allowed I, we determine numerically the molec-
ular symmetry-adapted function

S('(t)(Q) =gttgt') Yt (Q) .

The superscript 1 in St'tti refers to the identity representa-
tion of the truncated icosahedron (I). For the normalized
function S6&t& we find [as[)&] [0.320, 0.387, —0.476,
—0.206] for m = ~6, + 4, ~2, and 0, respectively, and
zero otherwise. Similarly for Sgntti we have [aPaIti]

[0.206, —0.423, —0.056, —0.356, —0.287, 0.354] for
m= ~10, ~8, ~6, ~4, ~2, and 0, respectively, and
zero otherwise. We define a molecular form factor by

60
g('= g St(t)(Q,), (2)

St'(Q) -g atmr Ym(Q) (3)

and the coefficients at ' are tabulated in Ref. [15]. The
I =6 manifold reduces to the representations [15] & ~s,
A 2g Eg T2g T]g T2g under OI, . For I = 10, the repre-

T2g . In each case r has 2l+1 components.
An arbitrary molecular orientation [Q„'I with respect to

the standard orientation [Q„] is obtained by a rotation
specified by the three Euler angles m. Orientational fluc-
tuations of the molecule with symmetry I at a lattice site
with symmetry r are described by molecular rotator
functions [11,13]

and obtain gQi -16.92, g6I =2.56, gll0-19.35.
Orientational Auctuations at a cubic site can be ex-

panded in terms of site-symmetry-adapted functions St'
[15]. The superscript r -(I,p, i) accounts for the irre-
ducible representations I of the cubic group Oh, p distin-
guishes between representations that occur more than
once, and i denotes the rows of a given representation.
The functions Sl' are given by
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Ui'(a) ) =g al"(I)2)1" (m) al ',
n, m

(4)

where X)P™are the Wigner matrices; rotator functions
U(m) with I =3 were originally introduced for solid CD4
in Ref. [16]. The coeScients al(li and al ' refer to the
symmetry of the molecule and of the site, respectively.

So far we have considered a single molecule at a
specific crystal site. The orientational configuration of N
molecules in a crystal is given by [Ul'(m(n))], where
n =1, . . . , N labels the molecular centers at rigid lattice
positions X(n). In the following, we write UI(n) for
Ui((u(n)). The molecular interaction is written as a sum
of atom-atom potentials V(n, v;n', v'):

V 2 gg V(n, v;n', v').
tl, n v, v

(5)

Here (n, v) labels the vth atom of the molecule at site n.
Expanding V in terms of rotator functions, we obtain [13]

V —,
' g g g Ul'I' (n n')gi'g—j'UI" (n)UI" (n'),

n, n' l, l' i, r'

where

(6)

vi'I»'(n —n') d 0„d0;V(n, v;n', v')

xSI'(g„)SI' (g„), (7)

and the integrals are performed over all orientations. The
sums over v and v' in Eq. (5) (3600 terms per pair of
molecules) have been replaced by sums over I, I', r, and
t' [Eq. (6)]. Molecular and site symmetry considerations
severely restrict the numbers of terms in the latter sums.
Thus the challenge of numerical computation is enor-

mously reduced.
Since the molecules in C60 fullerite are neutral, short-

range repulsive forces largely determine the relative
orientations of molecules. In treating the interaction,
we restrict ourselves to the twelve nearest neighbors n'

of each molecule n on the fcc lattice. We write X(n
—n') X(ir), a 1-12, for the vector joining the centers
of mass of molecules n and n'. We have numerically cal-
culated the interaction matrix elements [Eq. (7)] for 12-6
Lennard-Jones (LJ) potentials between carbon atoms

v, v'. For a range of realistic values of the LJ parameters
e and o, we find that the largest values of the elements
i. l'(' (a') for I I'=6 and for I =I'=10 occur for the rep-
resentations T2g and T2g respectively. Although the
elements for 1=6 are about a factor of 4 larger than
those for I 10, the I =10 terms dominate the interaction,
Eq. (6), because the molecular form factor gl'0 is much

larger than g6 [see Eq. (2)]. This contrasts with all other
known examples of orientationally disordered molecular
crystals, where the orientational mode with the smallest I
value compatible with molecular symmetry is dominant
in determinif|g the molecular interaction. The I =10
mode dominates because symmetry-adapted functions be-

longing to this manifold give a more accurate description
of the corrugations of the molecular structure than those

with l=6. The relative importance of the I=10 term is
also demonstrated in recent quasielastic neutron scatter-
ing results [4]. In what follows we restrict our attention
to the orientational mode of T2g symmetry with l =10.
The relevant basis functions S']0~~„i, i =1-3, are tabulat-
ed in Ref. [IS].

The structure of the interaction matrices vio|0(x) de-
pends on the symmetry of the functions SIO(o, &

(see
below), and on the index x which specifies the relative po-
sitions of the two interacting molecules in the fcc lattice.
For a given molecule at the origin, there are four neigh-
bors in the (100) plane in positions (0, ~a/2, ~ a/2),
where a =14.17 A is the lattice constant. Similarly there
are four nearest-neighbor molecules in the (010) and
(001) planes. For the molecules at X(a) =(0, + a/2,
~a/2), we find

y 0 0
Vio io(K) 0 a + p

,0 +P a

For realistic values of the LJ parameters we find that a
and P are 2 orders of magnitude smaller than y. This can
be understood as follows: the functions S/(Q, i of T2g
symmetry transform under the operations of the cubic
group as the Cartesian tensors yz, zx, and xy for
i 1,2, 3, respectively. The orientational density distribu-
tion corresponding to Si'~o„i has a cigarlike shape along
the [Ol I] direction in the crystal. Therefore two mole-
cules in relative positions (0, + a/2, + a/2) have a max-
imum repulsive interaction if their orientational distribu-
tions are both described by Si~p, i, which corresponds to
the element (l, l) =y. Similarly, for the four molecules
in the (010) plane and in the (001) plane, the elements
(2,2) and (3,3), respectively, are equal to y. In the fol-
lowing we shall neglect a,P«y. Taking plausible values
[10,17] for the LJ parameters, @=28 K and (r=3.74 A,
we obtain y 1.67 K.

Fourier transforming Eq. (6), for the case of the I =10
multipolar interaction with T2g symmetry, we obtain

V o= —P Pv"(q)(gi'o)'U', (q)U' (—q),

where

l2

i "(q) = g v'1'Q|0(ir)cos[q X(K)]

For a central molecule surrounded by four neighbors in

the (100) plane we have

v''(q) =2yjcos[(q»+q, )a/2]+cos[(q» —q, )a/2]} .

The elements v (q) and v (q) are similarly obtained

exchanging q~ q and q, q„, respectively. At the I

point of the Brillouin zone, k"= (0,0,0), we get
v"(k") =4y for all i, so the interaction is repulsive. At

the X point, where k„=(2x/a, 0,0), k» =(0,2z/a, 0), and
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k, =(0,0,2z/a), we obtain v (k, ) =4y, but v "(k, )
=t (k, ) = —4y, implying an attractive interaction.
Similar results are obtained for k~ and k~ by appropriate
permutations of indices.

An attractive interaction at the X point leads to a con-
densation of U~'0 or U~o for q=kz. The cases q=kz and

k~ follow by cyclic permutation. The condensation
scheme is therefore

Fm 3m: (kx Ui3o(kx) UIo(kx) U2 (kx) = r)%0 .

U' (k ) =U~'o(k~x) =Ufo(k ) =0) Pa3.

(i2)

In real space this means that the order-parameter com-
ponents on the sublattices (0,0,0), (O, a/2, a/2), (a/2, 0,
a/2), and (a/2, a/2, 0) are (ri, t), r) ), ( —

rl,
—r), r)),

(r), —
ri,

—ri), and ( —ri, r),
—ri), respectively.

The transition Fm3m Pa3 has been studied previ-
ously [l8] from a group-theoretical point of view for the
case of Na02. There the order parameter has T2z com-
ponents belonging to the manifold I 2 [19]. We have
shown here that in the case of C6p the order parameter
has the same symmetry, but belongs to the manifold
l 10. The transition results from condensation of an ac-
tive mode characterized by k and the irreducible ray
representation i [20], which is equivalent to the repre-
sentation Es of D4t, . The functions S'jp(o, ) (equivalently
U'Ip), whicll form a basis TgIi of Op, are also basis fullc-
tions of the representation Es of D4&. Consequently, the
condensation of U' at kx leads to the Pa3 structure.
These conclusions are in accordance with the subduction
criterion of Birman [21]. Since the product UrpUipU]p of
the order-parameter functions has cubic symmetry, the
third-order term in the free energy expansion is nonzero
and therefore the phase transition is first order. This has
also been inferred from structural data [9].

In order to calculate the transition temperature we also
need the crystal-field potential Vcp. Considering the
twelve nearest neighbors of a given central molecule as
spheres (l 0), the field at the central molecule then has
full cubic symmetry (A is). From Eq. (6), we obtain

VCF =12+v l "pgtigj'UI "(ru), l =6,10, (13)
I

where Ui '*(m) is a cubic rotator function. The ele-
ments v&1 "are again evaluated using Eq. (7); we obtain

IA)g A)gt'0 6
= 4.57, vo ~p

= 0.03. The contribution from
l=6 clearly dominates, and we therefore neglect the
I = 10 term. The cubic rotator function U6 " is obtained
from Eq. (4) with l=6 and r =A~s. The elements a6('r)

were specified following Eq. (1). The elements [a6 "]
=[—0.661,0.353], for m = ~4 and 0, respectively, are
the expansion coefficients of the function S6" and taken
from Ref. [15].

Having determined the interaction and the crystal field,
we now calculate the free energy. From Ref. [13] we im-

where 1 is the 3 by 3 unit matrix, U~o has three com-
ponents U'~0, and go—=xT ' is the single molecule orien-
tational susceptibility, with

x =Z (g Jp) dmexp[ —VCF/T](U'ip) (is)

Here VcF and U'ip are functions of tu, and Z
fdtuexp[ —VCF/T]. The expectation value x is in-

dependent of i It.s temperature dependence is shown in

Fig. 1. A phase transition occurs at T, where the eigen-
value of I T+xv(q) vanishes. The highest value of T, is

obtained for q at the X point. Solving the equation
T, 4yx(T, ) we obtain T, 165 K (see also Fig. 1).
The theory has recently been extended by including
repulsive interaction centers on the single and double
bonds of the molecule. This brings the transition temper-
ature closer to the experimental value of 250 K; however,
the structure of the theory is unchanged.

We wish to emphasize that we have concentrated on
the orientationally disordered phase of C6p and on the
mechanism of onset of the transition. The problem of
describing the intermolecular potential, given the huge
number of interaction sites, has been made tractable
through the use of symmetry-adapted rotator functions
U~'(tu). The unusually high symmetry of the C6p mole-
cule implies that multipolar functions of T2g symmetry,
belonging to the manifold l 10, are dominant in driving
the transition to the ordered phase. The main contribu-
tion to the crystal field is due to the A ~s component of the
l 6 manifold. The phase transition occurs at the X
point of the Brillouin zone and is of first order. The con-
densation of the order parameter U'io(k ) leads to the
Pa3 structure. These results are general, and do not de-
pend on the particular choice of the LJ potential parame-
ters o and a All that is necessary is a sufficiently strong
repulsive potential. This is in agreement with recent
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FIG. I. The temperature dependence of x(T), and a graphi-

cal solution of the equation T, =6.664x(T, ). The reduced tem-
perature unit is T' T/6. 664

mediately find, to second order in U, that

F = i g [lgo + t'(q)](gio) 'Uio(q)Uio( —q), (14)
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measurements of the pressure dependence of the orienta-
tional ordering transition temperature [22,23], which
demonstrate the importance of the repulsive part of the
potential.

In the ordered phase, where molecules become more
and more orientationally localized, it may be that rotator
functions belonging to other T2g representations con-
tained in I =10 and 1=6 will prove to be important.
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