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Ion-Ripple Laser
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We present a new scheme, the ion-ripple laser, for generating tunable coherent radiation ranging from

microwaves to the ultraviolet. A relativistic electron beam obliquely propagating through an ion ripple

excites electromagnetic radiation which is coupled to a negative-energy electrostatic wave via backward

Raman scattering. The radiation peaks at a resonance frequency of m-2y k;,ccos8. We derive the

fluid theory dispersion relation for wave coupling and estimate the nonlinear saturation level. A 1 2/2 D

PIC simulation code is used to verify the theory and scaling laws.

PACS numbers: 42.55.Tb, 52.35.Fp, 52.40.Mj, 52.65.+z

We develop here a new scheme to generate tunable
coherent radiation. The basic concept is the use of a rela-
tivistic electron beam obliquely propagating through an
ion ripple, as shown in Fig. 1. This mechanism may be
capable of producing radiation from microwaves to the
ultraviolet. Electromagnetic radiation results from back-
ward Raman scattering with a peak growth rate at a res-
onance frequency m-2y k;,ccos8, where y is the beam's
Lorentz factor, c is the speed of light, k;, is the wave

number of the ion ripple, and 0 is the angle between the
beam and the ripple.

The first step is to create a plasma density variation or
ripple. For example, a sound wave can be used to modu-
late the density of a neutral gas which is then ionized by
a laser pulse [1]. Another way is to excite an ion acoustic
wave in a neutral plasma. The wave number of the plas-
rna ripple is equal to that of the ion acoustic wave,

k;„=to;,/c„where to;„ is the frequency of the ion acoustic
wave, and e, is the ion acoustic speed.

In order to produce radiation from the neutral plasma
ripple, a relativistic electron beam is injected into the

I -e beam

ion ripple

FIG. l. A relativistic electron beam propagates through an
ion ripple with an angle 8. The dashed curve is the actual beam
trajectory, while the straight arrow is the original beam path.

plasma ripple at an angle 0. As long as the beam density

nb is equal to or higher than the plasma density no, the
plasma electrons will be expelled from the path of beam

[2] in response to the space charge of the beam electrons.
The ion ripple will then be seen as a stationary undulator

force by the beam electrons.
We take the density of the ion ripple to be n;

=no[1+ e;, sin(k;„r)], where e;„ is the perturbation ripple
density, and r" is the ripple direction. Since the beam ve-

locity vo is much greater than the acoustic velocity c„the
ion ripple can be treated as stationary. If the transverse,

(x,y), variation of the ion ripple field on the beam elec-
tron is negligible, as shown in Fig. 1, the spatial variation
can be sirnplified to one dimension. The electric field seen

by the beam can be expressed by

4xn pe
E;, = e; cos(k„z)[xsin8 —zcos9],

M

where e; =e;,cos8 is the fractional ripple of ion density,
and k„=k;,cos19. The longitudinal (i) part of E;, may
excite electrostatic instabilities [3]; this becomes unim-

portant if k„c»to„,/y t, where co~ =4trnae /rn, is the

plasma frequency and m, is the rest mass of the electron.
Subjected to the transverse (x) field of E;„, the beam
electrons execute transverse oscillations, which are the
source of the energy needed to produce the electrornag-
netic radiation [4].

We will first derive the dispersion relation from fluid

theory [5] in order to study the growth rate and spectrum
of the radiation. The nonlinear saturation level is es-
timated from the trapping of beam electrons by the elec-
trostatic potential wells of the beam mode. The effects of
energy spread and emittance are discussed. We also use
a 1 2/2 D (ID in space, 3D in momenta and fields) elec-
tromagnetic particle-in-cell (PIC) simulation code [6] to
check the validity of the analytic theory, and to study the
nonlinear effects. Comparison with conventional free-
electron lasers (FELs) [4,5,7,8] is also provided.

The equations needed to derive the dispersion relation
are Maxwell equations, the continuity equation, and the
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equation of electron motion, and are given by

V E- =4n(n; —nb)e,

BB&,
V xE, = ——

c t

4' . 1 ~Ex
V xB,, = j,+-

c c Bt

0= + +r)nb P &nb nb t) P
r)t ym„ 1)z m„ t)z y

(2)

dP PxB= —e E+
dt ym, c

3xT r)nb .
Z

nb Bz

where E,-, E-, and E are the electric fields, B~, and B are
the magnetic fields, j,= —nbev„ is the transverse current
of beam electrons, P, P-, and P are the momenta of the
beam electron, x T is the beam electron temperature and

is assumed small, and the beam density is assumed, on

average, to be the same as the plasma (ion) density.
For t.;((1 and a small amplitude electromagnetic wave

(E~ &&
~ E;,~), we obtain the dispersion relation

4m%s =Cg,

where

(3)

=rp' —k ~c —o)p~„/y,

2 2 2
Npe + 3kp vt-

(ro kpvp) y'

C~ =k vpp„cu„„/4y, for y&&1, is the coupling factor of
the electromagnetic (EM) mode and the electrostatic
mode through the ion-ripple pump mode,

p„= —e; sin 8 (cop, /y)/(pp cop„/y+ k„'vp ),
pp=vp/c, v, is the electron thermal velocity, and ae =0
is the dispersion relation of an electromagnetic mode with

a wave number k in a uniform plasma, while e„=0 is the

dispersion relation for an electrostatic mode with a wave

number kp =k+k„(the conservation of momentum) in a

uniform plasma. The wave frequency can be determined

by the intersection of their dispersion curves; that is,

ru, = rp, , (the conservation of energy), where rp,

=(k c +co„,/y)' is the frequency of the EM mode,

co,, =k~ v o
—S is the frequency of slow electrostatic beam

mode, and S=(ro„,+3kpv, )'i /y i . Thus, for y»1,
the wave number of the backward Raman scattered EM
mode is k —2y (k;,cocos() —S)/c. This reveals the scal-

ing of the radiation frequency including Doppler shifts

and space-charge eAects. The reason we use the term
"backward" is that, in the beam frame, the undulator
field acts like an incoming wave and the radiation is in

the opposite direction.
By solving Eq. (3), we obtain the radiation frequen-

cy cp=rp, +iro;; rp, =co, 6/2 and—ro; =(—h, +Cf/
Srp, ) ' /2, where h=ru, —ro, , and 8'=rp, —rp„=h/2 is
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FIG. 2. Growth rate from theory (solid lines) and simulation

(discrete points) vs wave number for the cases of y=3, 8=45',
k, c/cop, =1.6, and e; =0.2 and e; =0.3, respectively.

the mismatch factor [4j. Resonance occurs at 6-0 so
that the requirement for instability is CfS & 0. The spec-
trum can be estimated by the coupling factor C~

&Srp, A (mismatch). The maximum growth rate is

rp; =ro„i e;sinO/y ~ (2k„c) ~. The nonlinear saturation
mechanism of the ion-ripple laser (lRL) is expected to be
due to beam electrons being trapped by the electrostatic
potential wells. Then the efficiency of a cold beam may
be estimated to be ri = (y —yph)/(y —

1 ), where y„h
= (1

—vph/c') ', and vph=vp —S/k„ is the phase velocity
of the slow electrostatic beam mode. The efficiency

rl =rop„/2k„cy'i . The cold beam limit is valid only if [9]
t. ,

' & ~vph ~, where i,' is the velocity spread, and the super-

script denotes the quantities in the beam frame. In the
laboratory frame, for y » 1, the condition becomes

4y//y ( r), where hy is the axial energy spread. The nor-

malized beam emittance t.„gives an eA'ective h, y; that is,

4y/y-(e„/a) /2, where a is the radial size of a cylindri-
cal beam.

We checked the validity of the above theory by a 1 2/2
D PIC simulation code which begins with the equilibrium
state plus a small amount of random thermal noise to
start the growth. Figure 2 shows the growth rate of an

EM wave for the case of y =3, k„c=1.6'~„0=45', and

e; =0.3 and e; =0.2, respectively. The simulations agree
well with the theory and verify that increasing e; (i.e. , in-

creasing Cf) makes the growth rate larger and the spec-
trum broader. From simulation, we know k~ =k+k„and
rp„-rp, , are satisfied (not shown). Hence, the instabili-

ty is due to backward Raman scattering.
The time evolution of the radiation wave energy (Fig.

3) gives the efficiency ri-7%, while the theoretical esti-
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FIG. 3. Time evolution of beam kinetic, total electrostatic,

total electromagnetic, and radiant electromagnetic wave energy
for the case of y=3, 8=45', kate/co~ 1.6, and e;=0.3. The
electrostatic energy is multiplied by a factor of 1000.
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FIG. 4. Growth rate and efficiency from theory (solid lines)

and simulation (discrete points) as a function of effective undu-

lator wave number for the case of y=3, 8 45', and e; =0.3.

mate gives g-9%. The absolute instability of the for-
ward scattered mode is observed to be responsible for this
reduction. This instability can be decreased by increasing
the effective wave number of the ion ripple and/or beam

energy [8]. The efficiencies and growth rates of different
k„c are given in Fig. 4 for the case of y=3, e; =0.3, and
8=45'. As k„e increases, both efficiency and growth
rate decrease. Note that the efficiency decreases slower
than the growth rate. Figure 5 shows the dependence of
efficiency and growth rate on beam energy for the case of
k„c=1.6, e; =0.3, and 8=45'. Both efficiency and

growth rate decrease with increasing beam Lorentz fac-
tor. The decline of efficiency is faster than that of growth
rate.

We will now compare the ion-ripple laser with FELs
and ion-channel lasers (ICL) [10l and discuss the possi-
ble applications of the IRL. Because of technical lirnita-
tions of undulator length (e.g. , k„& 1 cm) and mag-
netic-field strength (e.g., & 5 x 10 G), conventional FEL
requires a very-high-energy (e.g. , E —1 GeV) electron
beam to produce short-wavelength (e.g. , 1-10 A) radi-
ation, but operates there with a low efficiency. This in-

creases the electron-beam requirements, higher energy
and higher current I; as well as magnet requirements,
stronger and more uniform magnetic field and more pre-
cise undulator length and alignment. In addition, the
gain and efficiency are small. Although some nonconven-
tional FELs [11]can provide shorter undulators, the driv-

ing field is not steady or intense enough. ICL can have
higher betatron oscillation frequency (ni„,/y'~ ) and
stronger driving force than conventional FELs, but the
scaling of radiation frequency with the beam y (i.e.,
eu-2y ~ ni„,) is something of a disadvantage.

By employing an IRL, the undulator length of ion rip-
ple, A,;„can be shorter (e.g. , k„c)ni„, —4X 10' rad/sec
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FIG. 5. Growth rate and efficiency from theory (solid lines)
and simulation (discrete points) as a function of beam y for the
case of k„e/cop, =1.6, 8=45, and e; =0.3.

for no=4&10' cm ) and can easily be adjusted; the
ion-ripple field is steady and very high (e.g. , ~E;„~-0.2
GV/m for nn =4& 10 cm, k;,c =2ro~, and e;, =0.4),
and there is no need for an external magnet system. Thus
IRLs using a lower-energy beam can provide the same
frequency wave source with higher efficiency than FELs;
higher efficiency means a larger beam energy spread is al-
lowed. Power supplies can be simpler and the heavy radi-
ation shield required for very-high-energy beams can be
eliminated. Alternatively an IRL using the same energy
beam as an FEL can produce shorter-wavelength coher-
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TABLE I. Numerical examples of ion-ripple laser scalings.

E (MeY)
hE (keV)
I (kA)
nq (cm ')
e, (ncmrad)
X„(cm)
x (A)
P (MW)

Microwave

&48
1

8.6 x 10"
& 0.86

13
1 x10

48

Infrared

5

&34

4.7x10 -'

& 4.4x 10
0. 17

1 x 10-'

34

18
&20

1

4.0 x 10'-'

& 1 9x10
0.019
1 x ]0.

20

ent radiation.
Table I gives numerical examples of ion-ripple laser

scaling in three frequency regimes for an electron beam
with 0=45', and k„c-2m„,. The limitations on hE, the
beam energy spread, and e„are given. The peak power of
the radiation, P, is estimated by the backward Raman
scattering scaling law. If the space-charge eff'ects were

not important, we would expect to obtain higher e%-
ciency and higher output power. The eA'ects of partial
dielectric guiding of the radiation and ion-guiding of the
electrons increase the overlap of the beam and radiation;
tapering the ripple wavelength may also enhance lasing.
Shorter wavelengths can be achieved by increasing the
undulator wave number and/or the beam energy and by

adjusting the angle of beam injection.
The scaling law given in this Letter is derived from the

collective behavior of beam electrons. We note that, for a

wavelength eIIua] to or shorter than x rays, the electron

spacing (nb
' ) may be larger than the radiation wave-

length. However, the linear density of a 1-kA beam is

2. 1x10ii cm
—i. that, s there are more than 10 particles

per wavelength (e.g. , X-5 A) for an x-ray laser, which

we assume to be a plane wave.
Although the lasing mechanism discussed in this Letter

is applied to laboratory radiation sources with their very

coherent beams and waves, the mechanism may also

occur in nature and particularly in some astrophysical ra-
diation sources.

In summary, we have proposed a new scheme to pro-
duce tunable laser sources from microwaves to the ultra-
violet. With a simpler system and lower beam require-
ments, ion-ripple lasers can have higher f requency.
eSciency, and output power than FELs as well as being
more flexible. Analytic theory and PI|" simulations were
used to verify the concept and to study the mechanisms.
To study more realistic situations, a 2 I/2 D simulation
needs to be performed and experiments are recommend-
ed.
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