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A new microscopic simulation method of heavy-ion collisions is formulated by incorporating the two-
nucleon collision process into the antisymmetrized version of molecular dynamics. This method can de-
scribe quantum-mechanical features such as shell effects. The fragment mass distribution of the
' C+ ' C reaction at 2S.7 MeV/nucleon is shown to be reproduced very well by this new method com-
bined with the treatment of statistical cascade decays of excited fragments, which verifies the usefulness
of the new method.

PACS numbers: 25.70.Pq, 24. 10.Cn, 24.60.Dr

&r(gz, &=(2v/tr) t exp[ —v(r —Z;/Jv) + —,
' Z;], (2)

where the width parameter v is treated as time indepen-
dent in the model presented in this paper. If we define D

The study of fragment formation is indispensable for
the understanding of heavy-ion reaction mechanisms.
"Quantum" molecular dynamics (QMD) [ll and the
Landau-Vlasov method combined with the percolation
analysis [2] are representative practical methods of mi-

croscopic simulation for the description of fragment for-
mation. These two methods are, however, largely of clas-
sical nature and, for example, they can describe shell
effects neither of the colliding individual nuclei nor in the
reaction process. The antisymmetrized version of molec-
ular dynamics [3-5], which Feldmeier called fermionic
molecular dynamics, treats explicitly the wave function of
the total system and hence is able to describe quantum-
mechanical effects such as shell effects. However, until
now the two-nucleon collision process has not been incor-
porated into the framework, which has made this frame-
work insufficient for the description of fragment forma-
tion.

The present authors have succeeded in incorporating
two-nucleon collisions into the antisymmetrized version of
molecular dynamics. This means the construction of a
new microscopic simulation framework of the heavy-ion
reaction. Hereafter we call this new simulation frame-
work simply AMD. The aims of this paper are first to ex-
plain this new framework of AMD and second to show an

example of applications of AMD to fragment formation
which verifies the usefulness of AMD.

In AMD, the wave function of the 8-nucleon system
~4& is described by a Slater determinant ~@(Z)&:

~+(Z)& = det[p;(j)], v; =4z,g, ,
1

A!

where a; represents the spin-isospin label of the ith
single-particle state, tt; =pt, p ], n t, or n ), and g is the
spin-isospin wave function. pz, is the spatial wave func-
tion of the ith single-particle state which is a Gaussian
wave packet:

and K as Z JvD+(i/2h Jv)K, then &pz)r)pz&/&pz(pz&
=D, and &pz(p)pz&/&pz[&Sz& =K. The time developments
of the centers of Gaussians, [Zj {Z; (i 1,2, . . . , A)j,
are determined by the time-dependent variational princi-
ple [6], and the resultant equation of motion for [Zj is

similar to Hamilton s equation with its Hamiltonian be-
ing given by the expectation value &H& of the nucleonic
Hamiltonian operator H by the A-body wave function
ie(Z) &.

When the fragmentation of a nucleus into NF frag-
ments is described by wave-packet theories like AMD
and QMD, the center-of-mass zero-point kinetic energy
To=36 v/2M of each fragment causes serious trouble
because the eAective value of the fragmentation threshold
energy is higher than its real value by the amount (NF—l)Tn. In order to avoid this spurious energy effect, we

modify the definition of the total system energy, namely,
the Hamiltonian If, by adding a correction term to
&H&: P =&H& —TnA+Tn(A —NF). In order to get a
better reproduction of binding energies of nuclei, we re-
gard To as an adjustable parameter whose value is close
to To but is not necessarily equal to To. The fragment
number NF for a given set of [D; (i =1,2, . . . , A)j can be
calculated in principle by using relative distances
[dt ~D; —DJ[j. We have used the following formula
for the calculation of ÃF.

1 1NF=g—
) ni' mi'

(3)

where f; =F(d~ , v, 0.5 fm), f~ =F(d~, 2. v, 0.25 fm), and

exp[ —p(d —b) ] if d & b,
F(d,P, b) ='

1 if d ( (4)

This formula is a refined version of a simpler sum formu-
la NF =p ~(Jl/nJ) which is easy to understand since nj
denotes the mass number of the fragment to which the
nucleon j belongs.

We use the frictional cooling method [4] for the con-

struction of the ground states of nuclei, namely, the
determination of [Zj which minimize 'iV The Volkov.
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No. 1 force [7] with m =0.576 is adopted as the effective
two-nucleon force and the Coulomb force is also included.
The width parameter v=0. 16 fm is chosen. The pa-
rameter To =7.7 MeV is taken in order to reproduce the
binding energies of a and ' C. We show in Fig. 1 the cal-
culated binding energies of light nuclei which reproduce
the observed values very well. The ground state of ' C
constructed in this way, which is used for our later study
of the ' C+ ' C reaction, has proved to be identical to the
shell-model state (Os) (Op) and hence it is completely
stationary. The rms radius of this ' C is calculated to be
2.49 fm, while its observed value is 2.48 fm.

In order to incorporate two-nucleon collisions into
AMD, we have constructed physical nucleon coordinates
{Wj={W; (i=1,2, . . . , A)j from {Zj because {Zj do
not always have the same meaning as the positions and
momenta of nucleons due to the antisymmetrization
effect. The definition of {Wj is given by
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FIG. 1. Good reproduction of the binding energies by theory.
Calculated values are shown by 0, ~, x, and G, while data are
given by various lines. Energies are in MeV/nucleon.

g (JQ ); Z, Q; In(4(Z) ~4(Z)) .
8(Z,' Z, )

(5)

The position RJ and momentum P~ of W~ =JvRJ.
+ (i/2h Jv)PJ have properties very similar to those of the
position and momentum coordinates of QMD. For exam-
ple, we can show that the total number of oscillator quan-
ta (N&,t) and the total angular momentum (L) can be ex-

pressed by {R~j and {P~j as if they were QMD coordi-
nates, namely,

A

(N„,)= g W WJ, (L)=—QWj*-xW).
j 1 t j

(6)

In the case of a two-nucleon system (A =2) of the

same spin and isospin, we see easily that {Wj coincide
with the canonical coordinates of Saraceno, Kramer, and

Fernandez [8,9] and in fact the introduction of {Wj has

been made by extending the idea of Ref. [8]. For A =2,
we can prove that ) W; —WJ (

~ v 2 always holds; namely,

the region of IW; —Wzl (J2 is the Pauli-forbidden re-

gion in the phase space. For general A, we define {Wj to
be Pauli forbidden when there exists no {Zj which

satisfies Eq. (5). We can easily show that the square root
of the average value of ~W; —WJ~ over all pairs (i,j) is

larger than J2. We have performed many numerical ex-

periments for general A, and have found that (W; —
W~~

cannot be too small for any pair (i,j ) if {Wj is Pauli al-

lowed, though the minimum value is not exactly J2.
Based on the above-mentioned properties of {Wj, we

treat two-nucleon collisions as follows: Two nucleons i
and j are made to scatter with the probability P(b)
=(voNN/n)exp( —vb ), where b is the impact parameter
between i and j, and the in-medium two-nucleon cross
section is given by on Jv (100 mb)/[I +Elvtv/(200
MeV)]. By the collision the positions R; and R~ are not

changed but the momenta P; and PJ are changed so as to
make isotropic scattering. The length of the final relative
momentum ~P —PJ( is changed from the initial one

(P; —PJ( so that the total energy P is conserved. If the
resultant {W'j is Pauli forbidden, namely, no correspond-
ing {Z'j is obtained by solving Eq. (5), this two-nucleon
collision is judged to be Pauli blocked. In order to facili-
tate the judgment of the Pauli blocking, we regard that
{W'j is Pauli forbidden if another nucleon exists in any of
two spheres with radius a centered at W and W~ in

phase space, where we have taken a =1.348.
We have applied AMD to the study of the fragment

mass distribution of the ' C+ ' C reaction at 28.7
MeV/nucleon. In Fig. 2 we compare the calculated re-
sults with the data of Czudek et al. [10]. The mass dis-
tribution is calculated at t =200 fm/c after the first con-
tact of two ' C nuclei. We have checked that the mass
distribution is almost stationary between t =155 and 200
fm/c. We have taken account of only those fragments
that have emission angles 4 & OF & 36 and momenta
per nucleon pF/AF & 100 MeV/c in the laboratory sys-
tem, because this angle selection exactly corresponds to
the experimental situation and the momentum selection
approximately corresponds to it. In Fig. 2, ' C is not
displayed since it is difficult to distinguish between scat-
tered and unscattered ' C. We see large calculated yields
of a and Be fragments, which shows the ability of AMD
to describe the shel& effect or a-clustering effect. We can
say that the qualitative feature of the data is reproduced
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"( (28. 7 MeV/u) + "C code CASCADE [11]. The mass distribution after the
treatment of cascade decays is compared with data in

Fig. 2. We see a good reproduction of the data by the
theory, which verifies the usefulness of our new micro-
scopic simulation framework AMD.

The total angular momentum conservation is violated

by our method of two-nucleon collisions and therefore the
calculated values of spins of the AMD fragments may not
be so reliable. However, we can believe that this violation
does not cause serious eA'ects on the mass distribution
after statistical cascade decays, because we have checked
that it remains almost unchanged even when we arti-
ficially increase the spins of the AMD fragments by 26.

The authors thank T. Murakami, K. Furutaka, and H.
Ikezoe for the explanation of the code CASCADE.
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FIG. 2. Comparison of calculated fragment production cross
sections with data (rl). Calculations at t =200 fm/c are shown

by 0, and those after the treatment of statistical decays are
shown by &.

by this calculation at t =200 fm/c, if we take into ac-
count the subsequent decay of Be fragments. The role
of two-nucleon collisions is essential to this fragment
mass distribution. When two-nucleon collisions are
switched off, two ' C nuclei pass through each other with
little excitations in most events.

We have calculated excitation energies and spin values
of fragments produced by the AMD simulation, which
are usually well separated from one another in the
configuration space. Since most fragments are highly ex-
cited, we have made a calculation of statistical cascade
decays of these fragments. Our calculation code written

by one of the authors (T.M. ) is a modified version of the
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