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We show that the generating functional for hard thermal loops with external gluons in QCD is essen-
tially given by the eikonal for a Chem-Simons gauge theory. This action, determined essentially by
gauge-invariance arguments, also gives an e%cient way of obtaining the hard thermal loop contributions
without the more involved calculation of Feynman diagrams.
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The Chem-Simons (CS) action made its appearance in

physics literature over ten years ago as a mass term for
gauge fields in three dimensions [1]. Studies since then
have revealed many interesting properties of this action.
The Abelian version can be used for spin transmutation,
converting spin-zero bosons into anyons, for example [2].
The correlators of Wilson lines in a pure CS theory are
related to the polynomial invariants of knot theory [3].
Pure CS theory is also closely related to conformal field
theory and the Wess-Zumino-Witten (WZW) action in
two dimensions [3,4]. Also, actions related to the CS ac-
tion can be used for self-dual gauge fields and integrable
systems [5]. Finally there is an intriguing class of vortex
solutions in spontaneously broken CS theory [6]. Howev-
er, despite this bounty of interesting results there have
not been many realistic physical systems for which the
CS action is relevant. In this Letter we show that the CS
action, more precisely its eikonal, is part of the effective
action for describing the gluon plasma in quantum chro-
modynamics (QCD). This action, determined essentially
by gauge-invariance requirements, gives an efficient way
of obtaining the hard thermal loop contributions, without
having to calculate the corresponding Feynman diagrams.
The CS connection is particularly interesting in view of
the possibility of producing the quark-gluon plasma in
heavy-ion collisions in the near future.

We consider QCD at temperatures well into the
deconfinement phase; i.e., we have a "hot" plasma of
gluons. The effective action mentioned above is more
precisely defined as follows. Pisarski has shown that a
partial resummation of Feynman diagrams in thermal
QCD is necessary to obtain gauge-invariant results, for
example, for the gluon damping rate in the plasma [7].
The resummation amounts to the following. We calcu-
late the one-loop diagrams of thermal QCD; the relevant
kinematical regime corresponds to the loop momentum
being much larger than the external momenta. These are
the so-called hard thermal loop contributions. For these,
the external momenta are typically of the order of gT
where g is the coupling constant and T is the tempera-
ture; where the loop momentum is hard, i.e., at least of
the order of T, is the region of interest. The leading con-
tributions are proportional to T . The generating func-
tional for hard thermal loops is the effective action.
Thus, once the high-temperature contributions of the
hard thermal loops have been obtained, calculations can

(2)d 0 bW =4ir d x Aoru',

where bA„=8„re+[A„,ru]. Equation (2) is realized by

4blV=J d xA'ru'. (3)

One can check that (3) is indeed the way gauge invari-

be done for any process starting from the effective action.
The result is gauge invariant and consistently accounts
for all terms of a given order in coupling constant [7].

Many authors [7,8] have written down versions of this

generating functional. The results involve a null vector
Q„=(1,Q) and integration JdQ over the directions of
the unit vector Q. Diagrammatically, Q arises as follows.
Thermal loops describe the absorption and emission of
particles from the surrounding medium or thermal bath.
These particles are on mass shell and thus the loop in-

tegration is only integration over the momentum three-
vector with a distribution of the Bose-Einstein or Fermi-
Dirac form. Integration over the magnitude of this vector
is then carried out leaving the angles, described by the
unit vector Q, for the final integration. We shall also
need the following coordinates (u, v, xT): u= —,

' Q' x,
v= 2 Q x, Q xT=O, where Q„'=(1,—Q). The com-

ponents of the gauge field along Q will be denoted by A',
viz. , A„= it'A„', Q

—A'=A', Q A =A. [t'] are a basis
of the Lie algebra of the group G, chosen as Hermitian
matrices in the fundamental representation with
Tr(t't ) = —,

' b' . Following Ref. [8], the generating
functional for hard thermal loops with external gluons
has the structure

CT2
2~ d4xA~'+J dn W (1)

C=Cq for quark loop contributions and C=Co for
gluon ghost loop contributions' Cq and CG are the qua-
dratic Casimirs for the quark and adjoint representations,
respectively. We shall not display the coupling constant g
in what follows, as it can be recovered by A„gA„.The
first term in parentheses is the well-known mass term for
the time-component of the gauge field. The second term
may be considered as what is necessary to render I gauge
invariant. The information given by the diagrammatic
analysis of hard thermal loops is that it can be written as

fdic

W, where lY is a functional of A =Q„A„.
The condition for the gauge invariance of I in (1) is
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ance is realized, again by analysis of diagrams. Thus it is
Eq. (3) that we must solve. We rewrite this, using the
transformation law for 8, as

df +[A f] 1&A
Bu 2 Bv

(4)

where f=bW/bA+ 2 A. Our analysis so far parallels
Ref. [8]. However, we shall now solve (3),(4) in terms of
the eikonal for the Chem-Simons theory [3,4]. (A solu-
tion, which is essentially the same as ours, but in a non-
thermal context, is also given in Ref. [9].)

We begin by brieIIy recalling some aspects of the pure
Chem-Simons theory [3,4]. Consider the CS action

J,d x Tr(a„8„a,+ —', a„a,a, )e"" .

8-. a; —8=a:+ [a-,a;] =0. (6)

This can be solved for a; as a function of a„atleast as a
power series in a. . The result is

Here a„is the Lie algebra valued gauge potential,a„=—i t'a„'. %e shall use complex coordinates z, z,
z =x+iy, to describe the spatial dimensions. The time
component ao can be set to zero as a gauge choice. The
equations of motion then tell us that a. ,a.— are indepen-
dent of time but satisfy the constraint

d zi1)n 1-
4 X

'z„a,(zi,zi) . a, (z„,z„)
(z —z i)(ii —z2) (z„—z)

This can be checked easily using 8, [l/(z —z')] =z8 (z —z').
Define the functional l[a, ] such that

ikbl =—
J d'x Tr(a,-[a, ]ba, ) .

Since a; is conjugate to a„I so defined is the action evaluated for the classical motion; thus it is Hamilton s principal
function or the eikonal for the CS action. [Recall that the eikonal for one-dimensional particle mechanics is the integral
of pdx, where p is the canonical momentum, specified as a function of x by fixing the energy. We have an analogous
situation where a; is specified in terms of a, by Eq. (6).l We can write l as

( —I )" + d'zi
I =ik

n 4
d'z„Tr[a,(z i,ii ) a, (z„,z.)]

n' z ipz23 zeal

(9)

where z;j =z; —zj. I is in fact the %ZW action. If we parametrize the two-dimensional gauge field as a, = —B,UU
where U is valued in the complexifieation of the group G, (9) ean be written in the more conventional form of the WZW
action [10] as I = ikSwzw, w—here

Swzw= d x Tr(|I,UtI;U ')—,d x Tr(U 'B„UU '8„UU '8,U)e"".2x" 12m 4 M' (10)

(As usual M =8 x [0, 1] with U(z, i,0) =1, U(z, z, 1)=U(z, i).) The WZW action is thus the eikonal for the CS ac-
tion. For our discussion below, a„will not be just a two-dimensional gauge field. Equation (9) will thus be the more
useful form. Also, since k is not relevant for our discussion, we shall henceforth set it to l.

Returning to Eq. (4), notice that it is of the form of a zero-curvature condition. We first do a Wick rotation to Eucli-
dian space so that 2u z, 2v z, 8„28„8,, 28@. Defining a;= f and a, =-,' A—, Eq. (4) is seen to be identical
to (6). Hence the solution for W is given by

W = —
—,
' d'x A'A' —4«l [A/2],

where from (9) and the definition of a„
1[A/2]=i+ g

d2xT( —I )" 1, d'z
1

n R'

d'z„ I [A(xi) . . A(x„)1
~ e o — Tr

(z12z23 zn1)
(12)

The potentials now depend on all four coordinates; however, since (4) does not involve differentiations with respect to
the transverse coordinates xT, all potentials in (12) have the same argument for these coordinates. In other words, the
transverse coordinates in (12) only play the role of parameters on which the A's depend. Using (11) in (1) we have the
generating functional in terms of the eikonal I,

I = ' d x 2zAOA' ——' dOA'A' —4«dQ I[A/2]
12m

We have not actually calculated Feynman diagrams to arrive at (13). The only input from a diagrammatic analysis
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has been the structure

fdic

W. However, it is easy to check that the n-point functions calculated from (13) agree with

the explicit diagrammatic evaluation of hard thermal loops. The n-point functions in momentum space are given by
1

(2n) bt 1 gk; I „,'. . .„'„(k1. k„)= d x1 d x„exp —igk;. x; V„", . „.'.„"(x1,. . . , x,),

V„",. . . „'"(x1,. . . , x.) = pnp

bA„,'(x, ) bA„'"(x„)„, (14)

The two-point function is given by

t' d zz h(zz, zz)

(i1 —zz)21'

bt2'(xT, —xT, )
I „'(x1 xz) =b' 4mb b b (x1 —x2) —

& dQQ„Q, b (x1 —xz)— (is)
x Ã Z) Z2

We need the Fourier transform to obtain the expression
in momentum space. This is straightforward for the first
two terms. For the last term we have an expression of the The vectors Q, g', in terms of the coordinates u, v,

form define a two-dimensional subspace in spacetime. Our re-
sults indicate that at high temperature, as far as the hard

~ d zz h(22, zz) thermal loops are concerned, the dynamics is essentially
the CS dynamics on this subspace, i.e., for the com-
ponents A„,A, The choice of this subspace can be incor-
porated into the action by using, instead of (5),

where h is an exponential of the form exp[i (k,z+k;z)].
Using |I,[1/(z —z') j =nb (z —z'), we get ,d x Tr(a„8~, +3 a„a~,)r13p, e""' ',

4@4 R' (2i)

8„H= —rl;, h. (i7)

This can be easily solved for H. The Fourier transform of
(15), after Wick rotation to Minkowski space, with 2k;

k Q, 2k, k Q', gives

ab ab CTr„'„=b' (4nb„,b„, f„,), —
12m

(Is)

where f„„=fdftQ„g„ko/k Q.
The three-point function involves the factor

(i12z23z31) in addition to the transverse b function and
color and Q„factors. Using the splitting

Z }2Z23Z31

1 1 1

(212) 213 223
(i9)

the Fourier transform can be evaluated by the same
method as in (16) and (17) to obtain

b~ ab~ l CT 1 kzor„„„=f"
2

dog„g„g,
k12m " 3 . 2

kio

k1 Q

(20)

Expressions (1S) and (20) agree with the diagrammatic
evaluation of hard thermal loops [7,11j. We have
checked the four-point function in a similar way. For this
and for the higher point functions, a splitting formula
analogous to (19) is very useful. It is given by the Ward
identity or in other words, by the recursive buildup of the
correlator of currents in the WZW model. Combined
with the Fourier transform method we have used, this
gives an efficient way of calculating the higher point func-

where r13„„=—,
' (m„n, m~—„),with m„,n„defining a basis

for vectors transverse to the Q-Q' plane, with ms, n3=0.
This action is similar to the Kahler-Chem-Simons (KCS)
action considered in Ref. 5. The diA'erence is that for us

ro, being restricted to directions transverse to the Q-Q'
plane, is degenerate. As for the KCS theory, the equa-
tions of motion tell us that the fields do not depend on the
extra fifth dimension in the action (21). Our final results,
of course, do not depend on the choice of the subspace

Q
define by Q since we integrate over the orientations of

Since the CS action is odd under parity, its presence in

a QCD calculation may be potentially worrisome. How-

ever, we do not have any parity violation because all our
results are integrated over the orientations of Q. Only
the parity-preserving contributions to the n-point func-
tions survive this integration. Also for the non-Abelian
CS action, one has to address the issue of quantization of
the coefficient of the action. Again, the integration over
the orientations of Q shows that there is no quantization.
The quantization arises, in the usual analysis, from the
requirement of invariance under homotopically nontrivial

gauge transformations. In our case, there are no nontrivi-
al gauge transformations consistent with the angular
symmetry imposed by the integration over the orienta-
tions of Q. In other words, the relevant winding number
corresponding to maps of the three-sphere into the group
cannot be defined in a way that is invariant under the Q
integration.

We conclude by rewriting the action in another way.
We define a;= —,

' Q'. A, a, = —,
' Q. A; a; and a, are in-

dependent and no longer related by Eq. (6). Further,
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define q =qg; we can then write

d q
I =8rr N(q)K [a.-,a;],

2z '2q

1 4K[a. ,a=] = —2C — d x Tr(a, a;)+il+iln"

(22)
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