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Experimental Determination of Billiard Wave Functions
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Wave functions of a stadium billiard are determined in a microwave analog experiment. It is shown
that Gutzwiller’s semiclassical representation of the Green’s function in terms of classical trajectories
can account not only for eigenvalue spectra but also for eigenfunction patterns.

PACS numbers: 05.45.+b

The perhaps most impressive way to demonstrate the
qualitative difference between integrable and noninte-
grable systems is the presentation of eigenfunction pat-
terns of billiards. Whereas for a rectangular or circular
billiard the nodal lines form a regular grid with a large
number of crossings, for nonintegrable billiards the node
lines perform meandric walks while avoiding any crossing
(in the presence of degeneracies the crossings can be des-
troyed by suitable superpositions of eigenfunctions also in
integrable billiards; for details see Chap. 15 of Ref. [1]).
This was first demonstrated by McDonald and Kaufman
[2] who calculated wave functions in a stadium billiard (a
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In Eq. (1) E, and #,(q) denote eigenenergy and eigen-
function of the nth eigenvalue, respectively. In Eq. (2)
the sum is over all trajectories starting at g4 and ending
at gg. S,(q4,98,E) is the classical action for the trajec-
tory, and m, is the Maslov index counting the number of
conjugated points. For billiards the action is given by
S(g4,98,E) =hkq. Here g denotes the total length of
the trajectory and k =+2mkE /h is the de Broglie wave
number of the particle. The Maslov index is given by
m, =2n,, where n, is the number of reflections (for a bil-
liard with hard walls every reflection gives rise to a phase
jump of x). The prefactor |A,|"? entering into Eq. (2)
takes into account the stability of the trajectory. A, can
be written as a Jacobian determinant,

A =18p5(q4.98,E)/8q8|, a.p=1,2, (3)

where the p§ are the two components of the momentum
at the starting point, written as functions of q4,9s,F, and
q5 are the two components of the end position. Classical-
ly, A, is proportional to the density of trajectories at point
gp starting isotropically from point g4 (a very readable
account of these questions can be found in Ref. [8]).
Taking g4 =¢gs=q in Eq. (2) and integrating over g,
one gets the Gutzwiller trace formula establishing a
correspondence between periodic orbits and the quan-
tum-mechanical spectrum. This correspondence could be
demonstrated experimentally by the present authors for
electromagnetic eigenfrequency spectra of billiard-shaped
microwave resonators (Ref. [9], hereafter denoted by I).
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more detailed account of this work can be found in Ref.
[31). A surprise was then the discovery by Heller that
many wave functions are not distributed more or less uni-
formly over the whole billiard but form so-called scars,
regions of extra high amplitudes near classical periodic
orbits [4,5]. An approach to explain these scars was
made by Bogomolny [6]. He used the fact that the
Green’s function,
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can be expressed semiclassically as a sum over classically
allowed trajectories [7],
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In I the equivalence of the two-dimensional time-
independent Schrodinger equation and the time-inde-
pendent wave equation was used for an experimental
determination of the quantum-mechanical eigenvalues.
The question arose whether a similar determination of
eigenfunctions was also possible. In fact, a first famous
analog experiment of this type was performed already
200 years ago by E. F. Chladni who studied nodal pat-
terns of vibrating plates. Even Chladni figures for irregu-
lar shapes were already observed in the last century but
could not be interpreted at that time [10]. Figure 1
shows a modern Chladni figure on a glass plate with the
shape of a quartered Sinai billiard. The meandric shape
of nodal lines first observed by McDonald and Kaufman
in their calculations on a stadium billiard can be observed
already with this extremely simple device. Comparably
simple is the experimental realization of wave chaos on
water surfaces [11].

Both mentioned arrangements are very well suited for
demonstration purposes but probably not for quantitative
measurements. Here again billiard-shaped microwave
resonators offer an alternative. It was shown in I that the
microwave reflection from such resonators measured as a
function of frequency shows minima whenever the irradi-
ated frequency corresponds to an eigenfrequency of the
resonator. The reflected microwave power is proportional
to the energy density at the coupling wire, i.e., to the
square of the electric-field strength. A scan of the cou-
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FIG. 1. Chladni figure on a glass plate of the shape of a
quarted Sinai billiard (@ =21 cm, b=14 cm, r =5 cm) is fixed
in the center and excited to vibrations by a loudspeaker. The
nodal lines of the vibrations are made visible by grains of semol-

ina distributed over the plate. Typical vibration frequencies are
in the range 100 to 2000 Hz.

pling wire over the area thus allows the determination of
E? as a function of the position (in the present experi-
ment a scalar network analyzer was used, with a vector
network analyzer even the determination of the sign of E
would be possible). Because of the one-to-one correspon-
dence between E? and the absolute square of the quan-
tum-mechanical wave function |¢|? a measurement of the
reflected microwave power P as a function of frequency
and position of the coupling wire yields directly the quan-
tity

P(g. k)~
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In Eq. (4) E corresponds to the square of the wave
number k =2nv/c, where v is the microwave frequency.
A is the experimentally observed width of the resonances,
limited because of the loss of microwave energy in the
walls of the resonator [in reality A differs from resonance
to resonance; therefore Eq. (4) is only approximately
correct].

The described procedure has one drawback. The very
existence of the coupling wire modifies the spectrum of
the resonator [12], and a displacement of the coupling
wire leads to a shift of the resonances of up to several
MHz. The maximum shift is observed at sites where the
wave function takes its maximum value, whereas at the
nodal lines the shift is zero. Therefore the nodal pattern
is undisturbed by the measurement, whereas deviations
are expected near the maxima of the wave functions.

The sketch of the experimental setup is shown in Fig.
2. The upper part of the resonator can be moved with
respect to the ground plate. The coupling wire with a di-
ameter of 0.5 mm enters through a hole in the ground
plate. To improve the electrical contact between the two
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FIG. 2. Sketch of the experimental setup.

parts, an iron weight was placed upon the resonator. The
quality figure of the resonator was about 2000, resulting
in linewidths of several MHz. The microwave frequency
was varied between 0.4 and 18 GHz using a Hewlett-
Packard microwave generator 8350B; the reflected power
was registered with a scalar network analyzer 8757A.
The resonator had the shape of a quartered stadium (see
Fig. 3). The position of the wire was scanned in steps of
0.5 cm in both directions yielding a total of 1555 pixels.

From the depths of the resonances the wave functions
were obtained as described above. Up to now, wave func-
tions for the first 80 eigenfrequencies were obtained. The
shift of the resonances upon variation of the coupling wire
complicates the reconstruction of the wave function for
frequencies above 7 GHz, as here the shift comes into the
order of magnitude of the distance between successive ei-
genvalues. As the measurements were performed in the
quartered stadium only wave functions with odd-odd par-
ity were registered. Figure 3 shows a selection of the re-
sults. The wave functions shown in Figs. 3(a)-3(c) are
readily associated with periodic orbits known from litera-
ture, namely, the “bouncing ball,”” the double diamond,
or the “whispering gallery” orbits. Some of the wave
functions show distinct scars. Figure 3(d) shows a wave
function belonging to one of the highest frequencies ana-
lyzed up to now. Here the disturbing influence of the
coupling wire becomes manifest. While the nodal pattern
is still clearly discernible, near the expected wave-func-
tion maxima one observes minima. It should be possible
to reduce this effect by using coupling wires with smaller
diameters. In principle diameters of the order of the skin
depth (amounting to about 1 um in the applied mi-
crowave range) should be sufficient for the irradiation of
the microfrequency.

Using our experimental data we are able to check the
validity of the semiclassical approximation (2) for the
Green’s function. Neglecting the influence of the damp-
ing, one obtains from Egs. (2) and (4) the following ex-
pression for P(q,k):

P(g,k)~ImX {i ~¥2|A,| 2 explikl, —inn,)} , (5)

where the sum is over all trajectories, not necessarily
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FIG. 3. Selection of stadium eigenfunctions with frequencies
(a) 3.384 GHz, (b) 3.865 GHz, (c) 4.056 GHz, and (d) 7.250
GHz. The measurements were performed in a resonator of the
shape of a quartered stadium (/=18 cm, r=13.5 cm). In the
illustration the stadium was completed by twofold reflection.
High amplitudes of the electric field are shown in black; nodal
lines are white.

periodic, starting from and ending at point q. /, is the
length and n, is the number of reflections of the respec-
tive trajectory. Therefore the Fourier transform of
P(q,k) with respect to k,

FIG. 4. Fourier transform ﬁ(q.l) of the experimentally
determined eigenfunction spectrum [see Eq. (6)] as a function
of position g for (a) /=2.4 cm, (b) 19.5 cm, (c) 27.4 cm, (d)
84.1 cm, and (e) 186.0 cm (left column). The classical coun-
terpart calculated from closed classical trajectories [see Eq. (5)]
is shown in the right column. For details see text.

Plq.n = [ P(q, k) exp(—ikDdk, ©

should project all contributions of paths with length / out
of the sum (5). The well-known divergence problems as-
sociated with Eq. (2) [13] are no longer present in Eq.
(6), as only trajectories with length / contribute to
P(q,!). Its number is always finite (with the possible ex-
ception of focal points). In I an analogous procedure was
applied to the eigenfrequency spectrum which is obtained
by integrating expression (5) over g.
The left part of Fig. 4 shows |P(g,!)| for a number of
-selected / values. The Fourier transform was applied
directly to the raw data, thus neglecting the influence of
the coupling wire. Nevertheless, closed paths are easily
recognized. For small / values the only way to get a
closed path is to start at distance //2 from a boundary, go
directly to this boundary, and return after a reflection to
the starting point [Fig. 4(a)l. For larger / values multi-
ple reflections become possible [Fig. 4(b)]. In Fig. 4(c)
the / value corresponds approximately to the length of the
bouncing ball orbit. Here every point between the long
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sides of the billiard is starting and end point of a closed
orbit, leading to a more or less uniform coloring of this
region, whereas the region within the quarter circle is
colored only weakly. Similar patterns are obtained at
multiples of the length of the bouncing ball orbit. At
several / values foci show up [Fig. 4(d)]. Here the focus-
ing property of the circle takes effect. At lengths above
about 1.5 m the structures disappear more and more.
There are, however, exceptions as shown in Fig. 4(e).
Here closed trajectories exist for most points in the stadi-
um, but apart from a small region near the upper right
corner.

This discussion has already shown that the measured
eigenfunctions can be interpreted qualitatively in terms of
classical closed trajectories. For a quantitative compar-
ison the right-hand side of Eq. (5) has to be calculated.
Instead of calculating the |A,|'?, which would require
one to determine the monodromy matrix for every indivi-
dual trajectory [6], a brute force method was applied.
First the area of the billiard was subdivided into pixels in
the same way as in the measurement. Then trajectories
were started in different directions in steps of 1° from the
center of each pixel [in Fig. 4(e) a step width of 0.25°
was chosen to improve the statistics). Whenever a trajec-
tory reached its starting pixel after length /, a correspond-
ing array variable was increased or decreased by 1, de-
pending on the number of reflections. The value calculat-
ed for a pixel is proportional to the density of returning
trajectories, i.e., to A, [see the discussion following Eq.
(3)]. This is just the square of the weight factor of the
trajectory in the semiclassical Green’s function. Up to
this square, which was not corrected for, the described
procedure is therefore able to reproduce expression (6)
quantitatively (provided that the number of trajectories is
sufficiently large). On the right-hand side of Fig. 4 the
absolute values of the obtained array variables are plot-
ted. One observes a nearly complete correspondence be-
tween the figures on the left-hand side, obtained from the
wave functions, and their classical counterparts, obtained
from classical trajectories. This shows that Gutzwiller’s
semiclassical approximation of the Green’s function is
able to account not only for eigenvalue spectra but also
for eigenfunction patterns. In other words, geometrical
optics and the de Broglie relation are sufficient to under-
stand both billiard eigenvalue and eigenfunction proper-
ties. One point not yet mentioned remains a bit mysteri-
ous. To arrive at the correspondence displayed in Fig. 4
it was necessary to reduce the lengths belonging to the
figures in the left column by 3 cm. It seems that the cou-
pling wire leads to an effective increase of the lengths of
the closed trajectories. Apart from this fact the coupling
wire, though changing spectrum and eigenfunctions
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moderately, is not able to disturb the correspondence be-
tween eigenfunctions and classical trajectories noticeably.

This work has shown that the mapping of billiard
eigenfunctions by means of a microwave analog is easily
possible. It has further demonstrated that the range of
applicability of the semiclassical approximation of the
Green’s function goes far beyond the interpretation of
spectra alone. Further attractive microwave applications
lie probably in the field of scattering and localization in
disordered media. In a similar way as described in this
work it should be possible to study enhanced backscatter-
ing, localization of wave functions, etc., within an array
of random scatterers. Indeed first experiments in this
direction have recently been performed though with a
somewhat different technique [14].

We are grateful to B. Eckhardt for numerous fruitful
discussions and for valuable suggestions to the manu-
script. K.-H. Kretschmer assisted in producing the
Chladni figures. The work was sponsored by the
Deutsche Forschungsgemeinschaft via the Sonder-
forschungsbereich *““Nichtlineare Dynamik.”

Note added.— After the completion of this work we be-
came aware of a recent publication on the same topic
[15]. In contrast to the present work the author did not
use the reflected microwave power but the shift of the
eigenfrequencies to map the eigenfunctions.
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FIG. 1. Chladni figure on a glass plate of the shape of a
quarted Sinai billiard (¢ =21 cm, b=14 cm, r =5 cm) is fixed
in the center and excited to vibrations by a loudspeaker. The
nodal lines of the vibrations are made visible by grains of semol-
ina distributed over the plate. Typical vibration frequencies are
in the range 100 to 2000 Hz.
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FIG. 2. Sketch of the experimental setup.
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FIG. 3. Selection of stadium eigenfunctions with frequencies
(a) 3.384 GHz, (b) 3.865 GHz, (c) 4.056 GHz, and (d) 7.250
GHz. The measurements were performed in a resonator of the
shape of a quartered stadium (/=18 cm, r=13.5 cm). In the
illustration the stadium was completed by twofold reflection.
High amplitudes of the electric field are shown in black; nodal
lines are white.



FIG. 4. Fourier transform P(g,!) of the experimentally
determined eigenfunction spectrum [see Eq. (6)] as a function
of position g for (a) /=2.4 cm, (b) 19.5 cm, (c) 27.4 cm, (d)
84.1 cm, and (e) 186.0 cm (left column). The classical coun-
terpart calculated from closed classical trajectories [see Eq. (5)]
is shown in the right column. For details see text.



