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Classical Amplitude Squeezing for Precision Measurements
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In analogy to squeezing of light, noise in a classical oscillator can be squeezed to reduce amplitude un-

certainty. While this can be achieved to some extent in a harmonic oscillator parametrically driven at

2&up, true amplitude squeezing is possible in anharmonic oscillators, either by driving at 2cop or allowing

amplitude-dependent dephasing. These techniques can reduce the uncertainty in measurements of the

frequency of an oscillator; for example, the thermal uncertainty in the relativistic frequency shift in sin-

gle ion mass spectroscopy can be reduced by more than a factor of 5.

PACS numbers: 06.20.—f, 07.75.+h, 42.50.Dv, 46.10.+z

In recent years, understanding of squeezed light [1,2]
has evolved to the point that detection below the shot-
noise limit has been demonstrated [3,4], and several ap-
plications of these nonclassical states are being considered
[5]. Although the emphasis has been in the quantum re-

gime, where the source of noise is the uncertainty princi-

ple, there is a classical correspondence [6] which suggests
that noise of a thermal or technical origin can be
squeezed to minimize its unwanted effects on a particular
measurement. Such a reduction of thermal noise in a
quadrature component has been observed in a high-g
classical oscillator by parametric excitation and has ap-
plications to atomic force microscopy and gravity wave

detection [7]. A similar reduction in amplitude uncer-
tainty would be useful for determining the frequency of
an anharmonic oscillator in the presence of noise. Since
the frequency is amplitude dependent, Iluctuations in am-

plitude will result in fluctuations in the measured fre-
quency. This paper describes three schemes for ampli-
tude squeezing in a classical anharmonic osci11ator: by
driving parametrically at 2mo in the anharmonic and har-
monic regimes, and by dephasing in an undriven oscilla-
tor. As an illustration, this concept is applied to high-
precision mass spectroscopy of a single trapped ion.

%e begin by considering the motion of a classical
anharmonic oscillator parametrically driven at twice the
resonant frequency. A simple treatment is presented,
with emphasis on the phase diagram, of an undamped
resonant oscillator to lowest order in the parametric drive

C(t )coscoot +S(t )sin coat . (2)

In this approximation, C(t) and S(t) are slowly varying
(i.e., dC/dt, dS/dt«rcoo). Thus d C/dt and d S/dt
can be neg1ected in the equation of motion, yielding the
autonomous system of equations

dC 2 dS
dt

= tc(C+ yr S), = —«(S+ yr C),
dj

~here

(3)

« =@too/4, y =3a/2e.

Rewriting in terms of r and 8 leads to the first integral of
the motion:

strength and the anharmonicity. (Higher-order expan-
sions, detuning, and damping [8,9] can be neglected for
the mass spectroscopy example. ) Afterwards, the special
cases of no anharmonicity and no parametric drive are
considered.

The potential for a one-dimensional oscillator with a

small (az «1) quartic anharmonic correction whose fre-

quency is modulated at 2tao by a weak (e« 1) parametric
drive is

U(z, t) =
2 rncooz (I+ssin2toot+ 2 cz ) .

To lowest order in a and s, higher harmonics can be
neglected, and one expects oscillation only at too..

z (t ) r(t )cos(toot —8(t ) )
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FIG. 1. Amplitude squeezing for an anharmonic oscillator
driven at 2r00 for y(0. Initial Gaussian contours (I) are
transformed along the phase trajectories in the C-S plane (dot-
ted lines) through intermediate states (2) and (3) until ampli-
tude uncertainty is reduced (4). (The y) 0 diagram is ob-
tained by reflecting about either axis. )

FIG. 2. Quadrature squeezing for a harmonic oscillator
driven at 2r00. An initial Gaussian distribution (l) at the origin
is transformed along the hyperbolic phase trajectories into an

elliptical distribution (2). A coherent pulse displaces the distri-
bution so that its major axis is in the tangential direction, re-

sulting in a reduced amplitude uncertainty with respect to the
final coordinates (C',S).

a =ri re =r +2r sin28/y+ I/y (4)

This enables the system of equations to be decoupled, and
the time evolution along the trajectories is obtained by
solving the resultant elliptic integral equation for r(t) or
8(t). There are two topologically distinct types of phase
trajectories. The "outer" trajectories (case a & r*) en-

circle both centers, and the time evolution is determined
from

a't = —(I/2ya )[F(e&(8)[I/y a )]it-stt'iI,

where

sine& (8) = sin20

(I cos 28/y a")
and F(pim ) is the Legendre elliptic integral of the first
kind [10). The "inner" trajectories (case 0(a (r*)
encircle just one of the centers. From (4), there are two
solutions for r, and the trajectories evolve according to

where

sine (8) =cos28/i ya

This phase diagram can be qualitatively understood as

which specifies the trajectories in phase space (Fig. I).
They are Cassinian ovals, defined as the loci of points
which maintain a constant product of the distances r i and

r2 from the two fixed points (centers) located at (r*,8 ):

r*=lyl '", 8*=sgn(y)-,'z~ -,'x.

a competition between the parametric excitation and the
anharmonicity. The parametric drive amplifies the in-
phase component and attenuates the out-of-phase com-
ponent, resulting in a ffow towards large iC( and small
i$i. The anharmonicity causes dephasing, appearing as a
rotation about the origin. At the centers, the two elfects
cancel.

The well-known cases of the parametrically driven har-
monic oscillator and the undriven anharmonic oscillator
can be recovered by letting a 0 and s 0, respectively.
For the driven harmonic case, the only fixed point is a
saddle point at the origin. The phase trajectories are hy-
perbolic (Fig. 2), ffowing towards large iCi and small
i$i. They are specified by the constant of the motion
1'=r sin28, and their time evolution is given by C(t)
=C(0)e"' and $(t) $(0)e "'. For the undriven an-
harmonic case, the fixed points merge into a center at the
origin. The amplitude r is the constant of the motion,
and the phase trajectories are concentric circles (Fig. 3)
evolving according to 8(t) =ayr t/too

The above equations can be used to study how the
thermal noise statistics are affected by parametric am-
plification and anharmonicity. The noise is simply
modeled so that the quadrature components C and S for
an ensemble of identically cooled oscillators are Gaussian
with equal standard deviations: hC =hS =o. If this
noise is displaced to a large mean amplitude ((r))) cr),
the polar components r and 0 are approximately Gaussian
near the center of the distribution. In this limit, the am-
plitude uncertainty and the phase uncertainty are about
equal: Ar = (r)/3. 8=a. — —
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FIG. 3. Amplitude squeezing for an undriven anharmonic os-

cillator. An initial Gaussian distribution (1) dephases with con-

stant amplitude, becoming a crescent distribution (2). After aC
displacement in the tangential direction, the distribution is am-

plitude squeezed with respect to the new coordinates (C,S').

The thermal noise can be "amplitude squeezed" by a
transformation which produces a crescent-shaped distri-
bution while maintaining the same phase-space density
(by Liouvilie's theorem), thereby reducing the amplitude
uncertainty at the expense of the phase uncertainty. If
this process is fast enough, further thermal effects may be
ignored. An ideal amplitude-squeezing process preserves
the product (r&hrh8, just as a minimum uncertainty
quantum state. This fact can be used to characterize the
quality of squeezing by defining a "squeezing efficiency"

gas

rj=o /(r&ar/t 8,
which is unity for a "minimum uncertainty ' classical dis-
tribution.

In the driven anharmonic oscillator, the initial circular
distribution is distorted into a crescent along the outer
trajectories, as shown in Fig. l. Amplitude squeezing
occurs where the flow is toward smaller amplitude, in this
case near the 5 axis. The points with larger amplitude
move faster in phase space and reach this region first,
thereby reducing the amplitude uncertainty. Squeezing
eSciencies close to 1 can be attained by this method. Re-
duced amplitude uncertainty can also result from propa-
gation along the inner trajectories, but to a much lesser
extent.

Quadrature squeezing can be achieved by driving the
oscillator at 2coo in the harmonic regime. The initial cir-
cular distribution becomes elliptical, preserving the rela-
tionship h, CAS =o. . In order to achieve reduction in hp',

a coherent force pulse must be applied to displace the dis-
tribution such that the major axis is along the tangential
direction [5] (Fig. 2). Although there is no limit to the

amount of quadrature squeezing in a harmonic oscillator,
there is a limit for amplitude squeezing since the final dis-

tribution is straight rather than crescent shaped. The
tails of the distribution are at a larger amplitude; thus

only a limited reduction in LLr is possible.
A third method for amplitude squeezing is by the de-

phasing of an undriven anharmonic oscillator, which is

analogous to the production of amplitude-squeezed light

by self-phase modulation [11]. The outermost points de-

phase faster, changing the initial circle into a crescent, as
can be seen in Fig. 3. Since the amplitude is constant in

the absence of the parametric drive, the amplitude uncer-

tainty cannot be reduced by this process alone. It is

necessary to displace the distribution in the tangential
direction by applying a coherent pulse. The result is an

amplitude-squeezed distribution with an efficiency close
to 1.

The techniques discussed so far can have important ap-
plications in single-ion mass spectroscopy. To date, rela-
tive mass measurements have been made up to an accura-

cy of 4x10 ' in a Penning trap [12,13]. When the pre-
cision is improved to the 10 " range, relativistic effects
will cause significant error if the mode amplitudes are
known only to their thermal cooling limits. To lowest or-
der, the velocity of a trapped ion is v=r0,'p„where
ro,'= eB/mc and p—, are the trap cyclotron frequency and

radius. Thus the relativistic mass shift bm is amplitude
dependent, and the thermal uncertainty in p, will cause a

mass uncertainty of

', a(p,') =- ', &p, &ap, .
m

A single trapped ion [14] is well suited for the above

squeezing schemes. The ion's amplitude and phase can
be controlled by applying coherent pulses to the endcaps,
and the trap anharmonicity can be adjusted by tuning the
compensation electrodes. The ion can be decoupled from
the resonant detector by changing the trapping potential,
becoming effectively undamped. By squeezing the ther-
mal noise, the precision can be improved by the factor P:

A(p2) (unsqueezed)

A(p, ) (squeezed)
(10)

Computer simulations of the evolution of an initial
Gaussian noise distribution of 1QOOO points were done us-

ing typical experimental parameters to calculate the
squeezing efficiencies and error reductions that would be
possible. The final amplitude was adjusted to be 20 times
the initial rms amplitude after cooling, ensuring that the
ion would stay within the region where the anharmonicity
can be controlled. All the additional parameters were ad-
justed to maximize the error reduction p for a specific
squeezing time. Table I summarizes P and rl for the
three methods. Both anharmonic schemes can achieve
true amplitude squeezing (r) =- I ) with large error reduc-
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Driven anharmonic
Driven harmonic
Undriven anharmonic

P(max)

5.8
2.5
8.7

g (for P =5)

0.97

0.98

TABLE I. Maximum error reduction P and typical squeezing
efftciency ri (at P 5) for single-ion mass spectroscopy simula-

tions where (r& =20J2cr.

us (F.D.) acknowledges additional support from a NSF
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the initial suggestion that squeezing could improve cyclo-
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Wong for helpful discussions and advice.

tions (p ) 5), which cannot be achieved by the harmonic
scheme. The limit in p occurs when the tails of the distri-
bution do not follow the proper curvature.

Each of the classical squeezing methods which have
been discussed has its advantages and disadvantages for
application to this experiment. The harmonic squeeze is
easiest to implement because there is no need to introduce
anharmonicity, but it has a low p and ri. Nonetheless,
because of its simplicity, the harmonic squeeze would be
useful as a first step before exploring the anharmonic
methods. The main advantage of the driven anharmonic
squeeze is that a final pulse is not needed. The undriven
anharmonic squeeze offers the most error reduction, but
like the harmonic squeeze, it requires a final pulse whose
phase must be precisely controlled with respect to the
evolved distribution. In this experiment, however, having

p greater than about 5 is not desirable because the in-
creased phase uncertainty substantially increases the
measurement time. Also, since the same measurement is

performed many times, a squeezing process with fewer
steps would be more practical. Thus the driven anhar-
rnonic method appears to be the most appropriate for this
application.
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