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Superfluid Density and the Drude Weight of the Hubbard Model
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We study the superfluid density and the Drude weight of the Hubbard model by investigating two
different limiting behaviors of the current-current correlation function. These quantities provide criteria
which allow one to distinguish between superconducting, metallic, and insulating ground states of an in-

teracting many-body system. Monte Carlo calculations are performed to study these quantities.

PACS numbers: 74.65.+n

A (l, t) =A„(q)e' ' (2)

In the presence of the vector potential, Eq. (I) is modified

by the usual Peierls phase factors e for cI+,cI, andi' (I)
—ieA (I) ~ ~ 0

e for cI,cI+,. Here we will work with units such

that h. =c = l and also set the lattice spacing equal to l.
Expanding the phase factors to order A in Eq. (I) gives

K~ =K —+lej„(f)A„(l)+2 e'k„(l)A„'(I)] .
I

(3)

Here ej~(l) is the x component of the paramagnetic

It is well known that the signature of the superconduct-
ing phase is the onset of the Meissner eNect. That is, a
suSciently weak magnetic Geld is expelled from a bulk
superconductor except for a thin penetration depth A, .
The inverse square of X, is a measure of the superAuid

density [I]. Here for lattice models we introduce a
superiluid weight D, proportional to A, and contrast it
with the Drude weight D [2,3]. We then examine D, and

D for the two-dimensional (2D) Hubbard model and dis-

cuss how these weights can be used to provide informa-
tion on whether a given model Hamiltonian has an insu-

lating, metallic, or superconducting phase. For the super-
conducting case, this avoids the problem of having to
choose a particular superconducting order parameter and

represents a new approach for studying less well-explored
models.

The lattice models we will consider have an electron ki-

netic energy

K = —t X (e(sejs+Cjseis) .
(ij &s

Here c;, creates an electron with spin s in an orbital at
site i, and the sum is over near-neighbor sites. The in-

teraction can be, for example, an on-site Un; tn; ~
or ex-

tended Vn; nj Hubbard form or a Holstein electron-
phonon coupling gn;x; in which the site energy depends

on the lattice displacement x;.
In the following, we will examine the current response

to a vector potential of wave vector q and frequency co,

&j„(q,co)) = —[e (& —k, &
—A „(q,to))A„(q, to)],

where A„„(q,to) is obtained from

~p
A„„(q,ito ) =— dr e'" '&j„"(q,r)j,"(—q, O)),

(7)

with co =2xm T, by the usual analytic continuation
iso~ co+i6, and

j('(q) =itive "(e(+„,c(, c(,c(+„,) . — (9)
I

Here &k„) is the kinetic energy per site divided by the

number of lattice dimensions.
The frequency-dependent, uniform, i.e., q=0, electric

conductivity a„„(to) is given by the current response to
an electric field, E„(q=O, to) icoA„=(q =O, to). From Eq.
(7), we have

, &
—k„&—A,„(q=O, to)

If the numerator approaches a finite limit as m 0, the
real part of o„(to) will contain a delta function contribu-
tion Db(to) with the "Drude weight" given by

D
, =& —k„& A,„(q=0,ito ——0) =

ze

current density with

Js(l) =it+(c(+„sc(s—c(,c(+„,), (4)
S

and k„(l) is the local kinetic energy associated with the
x-oriented links,

k„(l) = tg(c(~ c( +c(,c(+„). (5)
S

The total current density consists of the usual paramag-
netic and diamagnetic terms,

j„(l)= — =eje(l)+ e'k„(l)A„(l) .
Mg

hA, l

The linear current response produced by the vector poten-
tial in Eq. (2) is given by
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This implies a zero resistance state. On the other hand,
the Meissner effect is the current response to a static, i.e.,
to 0 and transverse gauge potential, q A(q, to=0) =0.
In the small q limit,

(j (q)) =f(q)(b.p qq—p/q')Ap(q) . (i2)

(n,—/m) *, (i3)

while ( —k ) —A „(q„O,q» =O,ito =0) =0 as re-

quired by gauge invariance. D measures the ratio of the
density of the mobile charge carriers to their mass
(n/m)*, whereas D, measures the ratio of the superfluid

density to mass (n, /m) . From Eqs. (12) and (13) we

see that the crucial difference between D and D, is the or-
der in which q» and ito approach zero [1,4]. At zero
temperature without disorder [5], the character of the
ground state is determined by the values that D and D,
approach as the size of the system increases to the bulk
limit [6]. In this limit we expect that both D and D, are
finite for a superconductor, D, =0 but D is finite for a
metal, and D=D, =0 for an insulator [2]. In the pres-
ence of disorder or at finite temperatures, the 8' function
in a„„(to) is smeared out to a Lorentzian, so that D=0
but a„„(to=0) remains finite.

In order to see how these limits behave, consider the
noninteracting case in which

For a superfluid, f(q 0) = —I/4nk = —D,/n is finite.
From Eq. (7), one obtains

D,/»te =( —k„)—A»(q„=O, q» O,i to~=0)

variance.
Another example is the half-filled repulsive-U Hubbard

model. In mean-field theory, the low-temperature state
has a spin-density-wave gap Asow. In this case A„„(q»

O, ay~ =0) = —(k„), so the superfluid density vanishes.
Alternatively, when q» =0 and to~ goes to zero,

2

A„„(q» =O, to 0) =—+sin p„3 [1 —2f(E„)],~SDW

(i 7)

which is equal to —(k„) when T goes to zero. Thus in

the mean-field ground state of the half-filled repulsive-U
Hubbard model both D, and D vanish, consistent with an

insulating ground state.
Using Monte Carlo techniques, we have calculated

A„(q, co ) and (k„) for both the repulsive and the attrac-
tive 2D Hubbard models. Results for A„,(q, to ) for a
half-filled band ((n) 1) with U 4 on an 8&8 lattice at

P =10 are shown in Fig. 1. The error bars in this figure
and the following figures represent the stochastic Monte
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For to~ finite, A»(q», to~) vanishes when q» is set to
zero, leading to a Drude weight D/»te equal to —(k„),
and we conclude that this system is a metal. Alternative-

ly, if co is set to zero, the q~ 0 limit of A„„ is

8 . , tlf(cp)
(q» O, to =0) = ——+sin p„. (15)

Np cp

0.0

1.0
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(b)
8x8, U=4, (n)=1.0, P=10

A partial integration shows that this is equal to ( —k„) so
that D, vanishes and there is no superfluid density, as ex-
pected.

A BCS mean-field calculation gives

A„„(q» 0,0) =—+sin p„
8 (i6)

P p

with Ep =(cp+A ) 't, which vanishes as T/T, 0.
Here 6 is the BCS gap. In the limit when q~ is first set to
zero, A„(O, to ) also vanishes. Thus the superconducting
mean-field ground state is characterized by D, /»re

=D/»re = —(k„) [7]. The BCS mean-field solution in-
correctly gives A„„(q„O,q» =O,io» =0) =0, violating
gauge invariance. However, it is well known [1] that ver-
tex corrections remove this difficulty and one obtains
A„(q„O,q» =O,ito =0) =( —k ), restoring gauge in-
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FIG. I. Monte Carlo results showing (a) A „(qy,m 0) vs

qy slid A (q, to~ 0) vs q; and (b) A (q O, co~) vs ro for
U 4, (n) I, and P 10 on an 8xg lattice. Minus half the ki-
netic energy per site &

—k„) is shown by the solid symbols. The
lines are guides to the eye.
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Carlo error. Spot checks using diA'erent imaginary time
slice spacings indicated that any systematic errors from
that source were less than 5%. Minus half the kinetic en-
ergy per site ( —k, ) is shown by the solid triangle. In
Fig. 1(a), we show A,„(q~,ro„, =0) and A (q, co =0)
vs q~ and q, respectively. It appears that these both ex-
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FIG. 2. Monte Carlo results for the attractive Hubbard mod-
el. (a) A„,(q~, ro =0) vs q»; (b) A„,(q„re~ =0) vs, q„ for
U= —4, &n&=0.875, and p=2, 6, and 10. Minus half the ki-
netic energy, &

—k„&, is indicated by the solid symbols. (c)
Monte Carlo results for A,„(q=0,cu ) vs ro for U= —4,
&n&=0.875, and P=10.

D/ne = lim [ —&k„)—A„„(q=0,2nT)] (18)

Results for P=8, 6, and 4 are shown in the inset in Fig.
3(b). Both the ru„, 0 and the T 0 extrapolations im-

ply a finite Drude weight D/ e,which is of order 90% of
&
—k„). Thus it appears that the 2D Hubbard model with

trapolate towards &
—k, ) as the momentum transfer goes

to zero, leading to D, =0. Figure 1(b) shows A„„(q
=O, ro„, ) vs cu, which appears to extrapolate to a slightly
larger value than &

—k„) as the temperature goes to zero,
leading to a small negative Drude weight for an 8x8 lat-
tice. The half-filled 4x4 lattice has also been found to
have a negative Drude weight [8]. As the lattice size in-
creases, we expected this to vanish like exp( —N, /(sow)
as the linear dimension N„of the lattice increases.
Monte Carlo simulations on 4 x 4, 6 & 6, . . . , 10x 10 lat-
tices support this behavior [9]. Thus D and D, vanish
and the half-filled 2D Hubbard model is an insulator.

Next consider the attractive Hubbard model with
U = —4 and a band filling of (n) =0.875. Results on an
8x 8 lattice for A„„(q,„ro„,=0) vs q~ and A„„(q„co„,=0)
vs q„are shown in Figs. 2(a) and 2(b) for various tem-
peratures. Again, the kinetic energy ( —k, ) at a given
temperature is shown as the solid symbols. It appears at
high temperatures, P=2, that A, „(q~,co =0) extrapo-
lates towards ( —k„) as q~, decreases, implying a zero
superfluid density. However, as the system is cooled, the
extrapolated value of A„,(q~, ro =0) decreases below
&
—k„) at P =6 and 10, implying a nonvanishing value for

D, . As P ~, A„„(q,, O, ro„, =0) goes to a finite value
less than &

—k ) so that n /m is finite. Note that
A„„(q, O, ru„, =0) continues to approach &

—k„), as re-
quired from gauge invariance. The behavior of A„„(q
=O, ro„, ) vs r0„, at P =10, shown in Fig. 2(c), also leads to
a nonvanishing Drude weight. We believe that in the su-
perconducting state D =D, . In two dimensions we expect
the negative-U Hubbard model to undergo a Kosterlitz-
Thouless [10] transition at a finite temperature [11,12]
where both D, and D would have a step discontinuity on

an infinite lattice.
Last we consider the repulsive-U Hubbard model

doped away from half filling. In this case, Monte Carlo
calculations are hindered by the fermion sign problem
[13], which makes it difficult to carry out low-tem-

perature simulations near half filling. Some results for an
8&8 lattice with U=4, (n) =0.5, and P =8 are shown in

Fig. 3. It appears from Fig. 3(a) that both A„„(q,
=O, q,„i'„,=0) and A„„(q„,q~, =O,i'„,=0) extrapolate
to &

—k ), and therefore D, vanishes. As shown in Fig.
3(b), A„„(q=O,iro„, ) extrapolates to a small value. How-

ever, this extrapolation is uncertain because even for
P=8, the Matsubara frequencies 2nm/P at m =2, 3, . . .

are at significant energies. An alternative approach,
shown in the inset in Fig. 3(b), examines the T going to
zero limit using the lowest M atsubara frequency
co] =2KT,
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U=4 and (n) 0.5 is a metal [14]. Preliminary calcula-
tions for values of (n) ranging from 0.5 to 0.9 at P=5
give D, =O and finite D.
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FIG. 3. Monte Carlo results for an 8X8 lattice with U=4,
(n& 0.5, and P 8. (a) A„(q», tu =0) vs q» and A„(q„
a» 0) vs q„(b) A,„(q O, a» ) vs co . ( —k„& is plotted as a
solid triangle. Inset in (b): A„„(q 0,2+T) vs T.

[I] J. R. Schrieffer, Theory of Superconductivity (Addison-

Wesley, Reading, MA, 1964).
[2] W. Kohn, Phys. Rev. 133, A 171 (1964).
[3] B. Shastry and B. Sutherland, Phys. Rev. Lett. 65, 243

(1990).
[4] D. Pines and P. Nozieres, The Theory of Quantum

Liquids I (Addison-Wesley, Reading, MA, 1966).
[5] The role of disorder in interacting Bose systems has been

recently studied using quantum Monte Carlo techniques

by R. T. Scalettar, G. G. Batrouni, and G. T. Zimanyi,
Phys. Rev. Lett. 66, 3144 (1991). The role of disorder in

the fermion Hubbard model is being explored by E.
Dagotto.

[6] For example, in the insulating spin-density-wave (SDW)
state, D and D, approach zero exponentially [2] with a
length scale set by the SDW coherence length,

)SDw &'F/tr+sDw

[7] In this case (n, /m) ( —k„& which varies as t in weak

coupling and t z/~UI in strong coupling [J. E. Hirsch and
F. Marsiglio (to be published)].

[8] R. M. Fye et al. , Phys. Rev. B 44, 6909 (1991);E. Dagot-
to et al. , NSF Report No. NSF-ITP-91-58 (to be pub-
lished).

[9] D. J. Scalapino, S. White, and S. C. Zhang (to be pub-
lished).

[10]J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

[I I] R. T. Scalettar et aL, Phys. Rev. Lett. 62, 1407 (1989).
[12] A. Moreo and D. J. Scalapino, Phys. Rev. Lett. 66, 946

(1991).
[13]E. Y. Loh et aL, Phys. Rev. B 4l, 9301 (1990).
[14] A nonzero D arises on a finite lattice at temperatures

below the threshold for quasi-particle-hole excitation,
which is finite on a finite-sized lattice. However, as the
lattice size increases this threshold temperature scales to
zero so that for a normal metal with an infinite lattice,
D 0 unless T 0.

2833


