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Trends of the Elastic Constants of Cubic Transition Metals
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We show for the first time, using ab initio calculations, that the trend exhibited by the elastic con-
stants in the transition metals can be simply understood. In particular, we show that the trend of the
elastic constants of cubic transition metals is determined by the energy difference between the fcc and
bcc structures of a given element, which in turn is determined by band filling. Our results suggest in-

directly that the reason for the disagreement between calculated "experimental" data for crystal energy
differences does not lie in the calculated results.

PACS numbers: 62.20.Dc, 71.10.+x, 71.25.pi

Many of the ground-state properties of the transition
metals are now well characterized and understood. For
example, the equilibrium volumes (V,„) show a parabolic
trend with a minimum in approximately the middle of the
series. The bulk modulus (B) and the cohesive energy
(E,) have similar trends, but with a maximum approxi-
mately where the volume has a minimum. The trends of
V,q and E, are roughly given by the Friedel model [I], in

which one is occupying bonding d orbitals in the first half
of the series and then filling antibonding d orbitals in the
second half of the series. In this model these 1 orbitals
form a narrow d band that is pinned at the Fermi energy
(EF), and assuming only nearest-neighbor hopping Petti-
for [2] demonstrated that the Friedel model connects the
maximum in the bulk modulus with the maximum in the
cohesive energy, as well as with the minimum in the equi-
librium volume. A more quantitative picture of the
trends of all three quantities is given by the universal
bonding model [3] based upon local density approxima-
tion (LDA) calculations. An important feature of the
LDA calculations is that B, V,„, and E, can be deter-
mined at the 90% accuracy level independent of crystal
structure, indicating that these quantities are independent
of the arrangement of the atoms as long as they are rath-
er closely packed (fcc, bcc, or hcp). It is this blend of de-
tailed calculations (LDA results) and descriptive con-
cepts (Friedel model) that has given a deeper understand-
ing of these average properties of solids.

The elastic constants (Ci 1, C|2, and C44) of the cubic
transition metals stand in contrast to the clear parabo1ic
trends shown by V,q, B, and E,. However, the observed
elastic constant trends for the 3d, 4d, and 5d series are
similar, and for simplicity we shall concentrate only on
one, the 5d series. To illustrate the problem we show in

Fig. 1 the tetragonal shear constant C' and the bulk
modulus B [C'=(Cii —Ciq)/2 and B=(Cil+2C|q)/3].
We have chosen C' instead of Cl] or C]2 because this
constant is obtained from the curvature of a tetragona1
distortion of a cubic lattice (see below). Despite the fact
that C' and 8 are both 1inear combinations of Cll and

Cl~, they do not follow a similar trend; the shear con-
stants of W and Ir are highly anomalous while the shear

constants of Cs, La, Ta, Pt, and Au follow approximately
the same trend as B. The lack of simple parabolic behav-
ior when the crystal symmetry is broken as in Ci| or C]2
has led to the belief that there is no simple explanation of
elastic constant behavior in the transition-metal elements.

Previous studies of elastic properties of transition-meta1
elements have mainly demonstrated the complexity of the
behavior. For example, the high shear constant of Ir
yields unusual brittle cleavage of that material, and it
was argued on this basis that Ir has very strong direction-
al atomic binding forces [4]. Similarly, using interatomic
central force potentials, it has been argued that the bcc
transition elements have strong directional covalent
bonds, since C' and E, could not both be fitted [5]. The
directionality in the bonds of bcc metals was also used as
an argument for the similar behavior of i3Eo and Kt, [5]
(i3Eo is the deviation between the predicted cohesive en-
ergies with and without the presence of covalent bonds,
and Kb is proportional to the difference between calculat-
ed and experimental C' values). Moreover, the covalent
bond strength was suggested to decrease with increasing

hand
—5i, where nd is the number of d electrons [5].

The tetragonal shear constant C' is obtained from the
curvature of the total energy under a volume-conserving
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FIG. 1. Experimental data for the tetragonal shear constant
(solid circles, right-hand scale) and for the bulk modulus (solid

line, left-hand scale) of the Sd transition metals.
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strain that modifies the c axes but keeps the a and b axes
equal [6-8]. C' is obtained from the curvature around
the energy minimum, i.e., for very small shears. Howev-

er, the same shear (tetragonal), although larger, can
transform a bcc crystal to a fcc crystal and vice versa.
Hence, both the fcc and the bcc crystal can be described
as body-centered tetragonal with c/a =J2 and 1, respec-
tively. This kind of shear is referred to as the Bains
transformation path [9]. It is therefore illustrative to
study the total energy as a function of not only small
shears (the C' values), but also shears of the same magni-
tude that bring a bcc crystal to the fcc structure and vice
versa. These considerations indicate that an understand-

ing of C' is tied up with an understanding of crystal struc-
ture trends in the transition metals.

The crystal structure stabilities of almost all transition
metals have been calculated from first principles [10-12].
The trend of the crystal structure stabilities was again
shown to be determined by the d electrons, and it was

even demonstrated that the eigenvalues [and therefore
the density of states (DOS)] of the "canonical d bands"
[13,14] (which only depend on the crystal structure, with

no potential or volume dependence) describe these trends
[10,11). Also, it was shown that the dominant term
which minimizes the total energy of a given structure is

associated with the shape, and the filling (number of
valence electrons) of the partial d DOS. This is essential-

ly described by the canonical d bands, which are unique
to that particular arrangement of the atoms. Another
feature given by these studies is that the energy diA'erence

between fcc and hcp is normally small, whereas the
difference between fcc and bcc structures can be substan-
tially higher. As mentioned above there is a path (the
Bains path [9]), involving one parameter, that describes
the bcc to fcc transition. The situation is more compli-
cated for the hcp structure, but the so-called Burgers
path [15] takes a bcc crystal to a hcp crystal. The
bcc hcp transition can be described as a shear together
with atomic displacements corresponding to the zone-

boundary [110] T~ phonon mode [16]. For this reason
we will consider the bcc and fcc structures only, neglect-
ing the hcp structure. The argument then for the crystal
structure trends (bcc versus fcc) is based upon the
difference between the double-peak structure of the bcc d
DOS and the broad roughly featureless fcc d DOS struc-
ture [101. As one goes across the 5d series, the occupied
fcc d DOS has a larger energy moment (La,Hf). After
passing the first bcc peak the bcc band energy is greater
(Ta,W). For the rest of the series, the fcc DOS moment
dominates. This same trend is seen in the 4d series, but
in the 3d series this trend is modified by magnetism [10].

We turn to the detailed LDA calculations of the elastic
constants themselves which indicate the level of accuracy
obtained. The first ab initio calculation of elastic con-
stants of transition metals was presented by Dacorogna,
Ashkenazi, and Peter [6] who calculated the C' constants
for thirteen fcc and bcc transition metals, using the linear

TABLE I. Experimental and theoretical values of the C' and

C44 constants (in Mbar). The experimental value of fcc La was
obtained at elevated temperatures (-600'C).

La
Hf
Ta

Re
Os
Ir
Pt
Au

C iexpt

0.041

0.541
1.638

1.719
0.522
0.160

C&theor

0.064
0.190
0.646
1.729
1.480
1.821
1.776
0.592
0.164

0.165

0.873
1.631

2.682
0.774
0.454

C theor

0.158
0.659
0.836
1.781
2.619
3.323
2.655
0.847
0.311
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muffin-tin orbital method in the atomic sphere approxi-
mation (LMTO-ASA) [13,14]. These results compared
fairly well with experiments, with the largest disagree-
ment being -50% too large in fcc Pd, -60% too large in

fcc Ag, as well as —60% too large in bcc Mo. Christen-
sen [7], on the other hand, found good agreement for
both fcc Pd and fcc Au, using LMTO-ASA calculations.
Moreover, Shimizu [17] and Ohta and Shimizu [18]
found fairly poor agreement in their calculated C' con-
stants of V and Cr. The only full potential treatment of
elastic constants of transition elements, that we are aware
of, were published by Alouani, Albers, and Methfessel,
who obtained good agreement with experiment for bcc
Mo [19].

In this Letter, results for both the total energies and
the shear constants are given. We have used a full-
potential linear muffin-tin orbital method (FP-LMTO)
[20] as well as a LMTO-ASA [13,14] method. The de-
tails of both FP-LMTO as well as LMTO-ASA calcula-
tions will be given in a longer paper. The accuracy of the
total energy needed for calculating the elastic constants is
on the order of 0.01 mRy. Shown in Table I are the re-
sults for C' and C44 (details about the trends of C44 will

also be given in a longer paper) from the full-potential
calculations. In order to establish trends we have per-
formed the calculations for all 5d transition elements in

the true crystal structures, except for the hexagonal ones
where we have used a hypothetical fcc structure. Except
for La (which is fcc only at elevated temperatures) we
have agreement between experiment and theory at the
-90% level. This gives one confidence that these calcu-
lations can be used to explain these trends. Next, in Fig.
2 the total energies (obtained from LMTO-ASA) are
shown for all 5d elements as a function of the c/a ratio,
i.e., the calculated Bains path [with the reference energy
set to zero for c/a K2 (fcc) for all elements]. From Fig.
2 it is clear that systems that have a large energy
difference between the bcc and fcc structures show a
large curvature of the total energy around the energy
minimum (for both bcc and fcc crystals) and should show

large C' values. Therefore from Fig. 2 one deduces that
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FIG. 2. Calculated Bains path for the Sd transition metals.
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the C' values scale with the energy difference between the
bcc and fcc structures To t.est this hypothesis, shown in

Fig. 3 are the calculated C' values, as well as (the magni-
tude of) the energy difference between the bcc and fcc
crystals, for all 5d metals. The data shown in Fig. 3 were
obtained from FP-LMTO calculations (the LMTO-ASA
calculations yield similar trends). We have also plotted
the experimental data for the cubic metals in Fig. 3. No-
tice that the anomalously high shear constants of W and
Ir simply react a very large difference in crystal
structural energies The. reasons for these large dif-
ferences in crystal structure energies have previously been
demonstrated to be governed by the d-band filling, and in

particular the shape of the "canonical" d bands [10,11].
For example, the bcc structure is energetically very un-

favorable on the low side of the second peak in the bcc d
DOS curve, where the bcc energy moment is smaller than
the fcc moment (Os, lr). Notice also that the scaling be-
tween the crystal structure energy and C' depends on the
shape of the Bains path for a particular system. Howev-

er, it is seen that (except for the high-temperature phase
of La) there is agreement to approximately (80-90)%.

If we put all the pieces together we arrive at a simple
explanation for the trend in C' for the cubic transition-
rnetal elements. From the calculation of the Bains path
one obtains not only the crystal structure stability, but its
"excited" state (bcc-fcc energy difference) and the fact
that C' is related to its excited-state structure. Therefore,
unlike V,q, B, and E„, the crystal structure energies deter-
mine the trends in C' and one does not get a parabolic
trend. Because both the stable crystal structure and its
excited state can be correlated with d-band filling we ar-
rive at a simple explanation for the values of C', i.e.,
those crystals for which band ftlling argu-ments dictate a
large bcc fcc energy digeren-ce will have large C' values
The physical explanation for this is that it is precisely
these systems for which the bcc-fcc transformation is

difficu)t and hence the C' values high.
Turning the argument around, since we are able to

reproduce the experimental C' data very well, one would
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FIG. 3. Theoretical data for the absolute value of the energy
difference between the fcc and bcc structures, as well as the cal-
culated tetragonal shear constant, C'. The experimental data
for C' are also shown. The fcc energy is lowest for all elements
except Ta and W.

therefore also expect the same kind of accuracy when

comparing calculated [10,12] (Fig. 3) and measured [21]
values of the bcc-fcc energy difference. However, the cal-
culated data [10,12] (Fig. 3) are sometimes a factor of
3-5 larger than the "experimental" data Ther.e is some
modeling associated with extracting the experimental
data, and we use the good agreement between our calcu-
lated and experimental C' data as an argument for exper-
imentalists to try and refine the experimental data for the
bcc-fcc energy difference.

Finally we speculate that similar correlations should
exist between the kcp-bcc energy difference and the
zone-boundary [110] T~ phonon mode of the bcc crystal,
since the atomic displacernent that brings a bcc crystal to
hcp corresponds to this mode, together with a shear (the
Burgers path [15]).
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