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Probability Density of Velocity Increments in Turbulent Flows
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(Received 22 January 1992)

Measurements have been made of the probability density function (PDF) of velocity increments Au(r)
for a wide range of separation distances r. Stretched exponentials provide good ~orking approximations
to the tails of the PDF. The stretching exponent varies monotonically from 0.5 for r in the dissipation
range to 2 for r in the integral scale range. Theoretical forms based on multifractal notions of tur-
bulence agree well with the measured PDFs. %'hen the largest scales in the velocity u are filtered out,
the PDF of hu(r) becomes symmetric and, for large r, close to exponential.

PACS numbers: 47.25.—c, 02.50.+s, 03.40.Gc, 05.45.+b

Much work in the turbulence literature [1-4] has been
devoted to the determination of the scaling properties of
the structure functions ([du(r)]"), where n is a positive
integer and du(r) is the velocity increment between two
spatial locations which are a distance r apart. It has re-
cently [5] been emphasized that a better strategy may be
to focus on the probability density functions (PDFs) of
Au(r), pq„(Au), rather than on the collection of mo-
ments. Accordingly, this Letter is concerned with the
PDFs of Au(r) and of velocity derivatives, and has three
purposes. First, it provides experimental data on
p~„(hu(r)) for a large range of separation distances r
spanning the dissipation range on one end and the in-
tegral scale range on the other. The data show that the
PDFs are square-root exponential for r in the dissipation
range and Gaussian for r on the order of the correlation
(or the integral) scale. Second, it provides for the PDFs
a theoretical expression based on the multifractal picture
for turbulence dynamics. The third aspect is related to
the exact result known for velocity increments [6], name-

ly, that in locally homogeneous turbulence, the third-
order structure function in the inertial range obeys the re-
lation

([hu(r)]') = —-', (c)r.

While the implications of the nonzero value of ([hu (r)] )
have not been understood fully, it has been shown recent-
ly [7] that the removal of the largest scales by high-pass
filtering renders the PDF of h, u symmetric. This Letter
provides experimental results on the p&„when the low-

frequency (or large scale) components of u have been
filtered out. For complementary results on PDFs of ve-

locity derivatives and increments, see Refs. [8] and [9].
We shall subsequently return to some of this work.

Measurements were made in the atmospheric surface
layer about 6 m above a wheat canopy in the Connecticut
Agricultural Research Station. Data were also acquired
about 2 m above the roof of a four-story building. The
laboratory data were acquired at a height of 0.2b, where
6 is the thickness of the boundary layer, over a smooth
flat plate. The boundary-layer-thickness Reynolds num-
ber at the measuring station was 32000. Velocity fluc-
tuations were measured using the standard hot-wire (5
pm diam, 0.6 mm length) velocimeter operated in the

constant-temperature mode on a DISA 55M01 anemom-
eter. The anemometer voltage was digitized on a 12-bit
digitizer and linearized before further processing. Veloci-
ty derivatives were obtained by central differencing of the
data. Taylor's frozen Aow hypothesis was used in inter-
preting time intervals as space intervals. The precise lim-
itations of this hypothesis are unclear (in spite of much
work), especially for the tails of the PDF, but it should be
noted that the mean convection velocity in the present ex-
periments was about 15 times larger than the standard
deviation of the fluctuating velocity. For obtaining the
PDF of the filtered data, a linear phase filter with excel-
lent cutoff characteristics [10] was used.

We have fitted stretched exponentials, p~„
-exp( —a)hu~ ), to the tails of p~„(bu). The inset to
Fig. 1 demonstrates, for one arbitrarily chosen r, that
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FIG. l. The experimentally determined stretching exponent
m in p~„(Au(r))-exp[ —a(du)™l,plotted as a function of
r/A. 0 and 0 are for two different sets of atmospheric data. The
Taylor microscale Reynolds number R& was on the order of
1500 for both. The laboratory data, not plotted here, show a
similar trend and roughly coincide with the atmospheric data.
Au(r) is obtained by taking the velocity differences separated

by a time difference ht, and interpreting r —ht U, where U is

the mean velocity of the flow at the measurement station
(Taylor's frozen liow hypothesis). The integral scale A was

determined by obtaining the area under the autocorrelation
function of u, and converting it to a length scale by Taylor's hy-

pothesis. Inset: The stretched exponential is a good approxima-
tion to typical experimental data for both sides of the distribu-

tion. In this figure and others in this paper, hu is normalized by

its root-mean-square value.
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there is an extensive region of the PDF to which a
stretched-exponential fit is good. It follows from Eq. (I)
that there must be a certain asymmetry between the two
tails of the distribution, but this asymmetry is not very
large. In fact, Fig. 1 shows that the differences between
the two tails of the distribution, insofar as they relate to
the stretched-exponential fits, are small. We shall there-
fore momentarily ignore this asymmetry and return to it
later. The empirically determined stretching exponents
are plotted in Fig. I as a function of r for two sets of at-
mospheric data. While square-root-exponential fits are
good for r in the dissipation range, Gaussian fits are ap-
propriate for r=Lp-lOA, where A is the autocorrelation
length scale of u (see caption to Fig. I ). This latter result
is not surprising because velocities at two widely separat-
ed points become independent of each other. The ex-
ponent m increases monotonically through the inertial
range. Laboratory data, not displayed here, show a simi-
lar behavior.

It should be noted that a somewhat similar effort for

gu(r) =pup(r/L) / / P.

~here duo is the characteristic velocity increment on the
macroscopic length Lp, and the tI s are identically distri-
buted independent random variables. Benzi et al. [9]
used a special case in which the probability density of P
was assumed to be given by

p&(P) ah( I —P) + (I —a)8(B—P), (3)

with a=
& and B —,', in conformity with experiments

[2,3]. Under the further assumption that hup is normally
distributed (see Fig. I), Benzi et al. [9] showed that the
PDF of d u is given by

temperature increments in a Rayleigh-Benard convection
experiment has been made in Ref. [11].

In a recent paper [9], Benzi et al. derived an expression
for the PDF of velocity increments. They assumed that
hu(r), for r in the inertial range, is given by the random

P model [12],

p~„{&u(r )) g Cga" ( I —a) 8 exp
1

p (2xo 2 ) 1/2

(gu2) '/ (r/L) '/

h, u
2

2&k;n
+ [I —[a+(I —a)B]"jb(hu), (4a)

(4b)

Wu(r) -v(rc, ) '/', (5)

where v is a "universal" stochastic variable, and rs, is the
total energy dissipation in the linear piece of size r. It is
clear that within this framework [14] any reasonable
model for e„and v will also yield a reasonable model for
the PDF of hu(r). A convenient model [15] for the ener-

gy dissipation is one in which the average energy Aux

summed over any box of size r/Lp=2 "can be written
as

Here, n is the number of steps assumed to occur in a cas-
cade before reaching a scale r and is given, for a binary
cascade, by n =logz(Lp/r). Notice that the second term
on the right-hand side of Eq. (4a) accounts for inactive
eddies, i.e., spatial regions where the dissipation of energy
is zero. Away from dtu =0, the first term on the right-
hand side of Eq. (4a) is the only contribution to the total
PDF.

An alternative expression can be obtained for
p~„(hu(r)) as follows. Following Kolmogorov [13] we

assume that for r in the inertial range of scales

gu (r) = (gu z) '/ +m '

p (m) =0.5[b(m —M)+8(m —(I —M))] (8)

with M 0.3. Using the normality of v and Eq. (8), we

get from Eq. (7) that

p~„{hu(r)) = g Ct", 2 ", »z exp
1

k 0 2XQ'g. g

h, u

2&k
2

Recalling again from Fig. I that p&„(hup) is Gaussian
(with mean 0 and variance (hupz) '/z), we obtain from Eq.
(7), with n=0, that the universal stochastic variable v

has a normal distribution with zero mean and unity vari-
ance. In stating this result, we are stretching the validity
of Eq. (5) all the way to the integral scales of motion.

Now, Meneveau and Sreenivasan [16] have shown that
the following simple model (the so-called p model) for
the probability density of m is adequate for most pur-
poses:

re, =Lpep+ m;, (6) (Au )'/ M / (I —M)&~ &/ (9b)

where the multipliers m; are identically distributed in-
dependent random variables. Here epLp is the typical en-

ergy dissipation contained in an eddy at the macroscopic
scale (or, equivalently, the total energy flux across
scales). Noting that (hug) —(Lpep) /, we write

Figure 2 shows comparisons between the experimental
data for two values of r (r/A =0.009 in the inertial range
and r/A 0.9) and the theoretical results of Eqs. (4) and
(9). The appropriate values of n to be used in Eqs. (4)
and (9) are determined by the relation n=logz(Lp/r)
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FlG. 2. A comparison between the experimental data for
p~(Au) for two values of r, and Eq. (9) based on the p model
(dashed line) and Eq. (4) based on the random P model (dotted
line). The formula based on the random P model tends to un-

derestimate the PDF of h, u close to 0.

Both expressions fit the data reasonably well, but the
theoretical curve for the random P model falls below the
experimental data in the region near h, u =0. This is so
because in this model the active zones (Au&0) tend to
become more sparse as n increases.

Equation (9) expresses the probability of finding a ve-

locity increment hu at a fixed scale r. The probability of
finding a "gradient" s =Au/r at the scale r can be writ-
ten, by a change of variables from h, u to s, as

P (s I r ) =rp, „(rs), (io)
where p&„ is given by Eq. (9) or Eq. (4). The quotation
marks for the gradient above reflect the fact that s is the
gradient only when r is comparable to the dissipation
scale rn defined by

roku(rg)/v I .

Note that the average value (rD) of rD is the Kolmogorov
scale r). For the p model, Eq. (11)becomes

FIG. 4. The stretching exponent m determined empirically
for Eqs. (4) and (9), compared with the experimentally deter-
mined data of Fig. I (dashed line, p model; dotted line, P mod-
el). The parameter n is determined arbitrarily by matching the
experiment with the theoretical formulas for some r/A Inset:.
An example in which Eq. (4) for n = IO (corresponding to
r/A=0. 009) is well fitted by a stretched exponential with

stretching exponent m =0.9.

which lies between 0 and N, is randomly picked for the p
model from a binomial distribution. Equation (12) and
the knowledge of the PDFs of v and k will allow us to
compute the probability that the dissipation scale is rD.
Let P„(r) be the probability that the dissipation scale is
r. The probability density for the gradient can now be
written from Eq. (10) as

p., (s) = dr P(sIr)P„(r), (i 3)

where we have weighted the conditional expectation
P(sIr) by the probability that the dissipation scale is r.
This step, while rigorous, would necessitate cumbersome
computations. We avoid them here by making the sim-

plifying assumption that

p (s) -P(sir =. ro) (i4)

v(&/)u )' Lo/v)M (1 —M) 2 =I (12)

Here, we have used the relation rn/La=2, and k,
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FIG. 3. A comparison between the experiment for the tails of
the p, (s) (solid line) and the theoretical formulas based on the

p model (dashed line) and the random P model (dotted line).

FIG. 5. Demonstration that the PDFs of increments u&,
which is the velocity u from which the low-frequency com-

ponents are removed, tend to an exponential form for large r.
This is in contrast to the unfiltered data for which the asymp-
totic form is nearly Gaussian. The high-pass-filter setting is 30
Hz for + and 9 Hz for O. The error bars are comparable to
the typical ones shown in Fig. l.
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Noting that rD = (v/s) '/, Eqs. (10) and (14) allow us to express p, (s) for the p model as

Jv(s)

g CN(s)
A 0

(15)

(to within a normalization constant). Note that, in Eq.
(15), N(s) =

2 log2(L() )s)/v) and that the approximate
sign in Eqs. (14) and (15) is a reminder about their
heuristic nature. Using these same assumptions, Benzi et
al. [9] derived a similar expression for the PDF of the ve-

locity gradient on the basis of the random P model. Fig-
ure 3 shows a comparison between experiment and Eq.
(15) and an alternative formula due to Benzi et al. [9].
The p model yields a slightly better fit to the data.

We now point out that the stretched exponentials ap-
proximate Eqs. (4) and (9) even though the latter two
are substantially more complex. This is illustrated in the
inset to Fig. 4 where Eq. (9) for n =10 is plotted against
(LLu) . The tails of the PDF are closely approximated
by a stretched exponential, consistent with Figs. I and 2.
The theoretical expressions have been examined for vari-
ous n, and the stretching exponents m are determined
from the best empirical fits [17]. For the stretched ex-
ponentials p&„(hu) p&„(0)exp( —a(hu ( ), reasonably
good straight lines can be fitted to the plot of
log[log[p&„(0)/p~„(hu)]] vs log(~hu)) in the range of
(hu) between the minimum and maximum of crk „[see.
Eqs. (4b) and (9b)]. The exponents so determined are
plotted in Fig. 4 by matching with experimental data at
one chosen location. The fits are good on the whole.

We now return to the asymmetry of the PDF of hu(r).
ln an earlier work [7], the velocity signal u was decom-
posed into its Fourier modes, and the modes below the
low-frequency end of the inertial range were eliminated.
The remaining Fourier modes were recombined to give
the filtered signal, say u &. The increments d, u & (r)

u&(x+r) —u& (x) were then found to be symmetri-
cally distributed. By fitting stretched exponentials to the
tails of the pq„(hu & ), we found that the exponents were
similar to those of the unfiltered data in the dissipation
range, but tended towards an exponential for large r (Fig.
5). An inquiry on the exponential behavior of the tails of
the PDFs of the temperature field has recently been un-
dertaken [18],but it is not clear whether similar explana-
tions hold for velocity increments in the filtered signal.
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