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Coupled Nonlinear Oscillators below the Synchronization Threshold:
Relaxation be Generalized Landau Damping
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We analyze a model of globally coupled nonlinear oscillators with randomly distributed frequencies.
Twenty-five years ago it was conjectured that, for coupling strengths below a certain threshold, this sys-
tem would always relax to an incoherent state. We prove this conjecture for the system linearized about
the incoherent state, for frequency distributions with compact support ~ The relaxation is exponentially
fast at. intermediate times but slower than exponential at long times. The decay mechanism is remark-
ably similar to Landau damping in plasmas, even though the model was originally inspired by biological
rhythms.

PACS numbers: 05.45.+b, 52.35.Fp, 87. 10.+e
Nonlinear oscillators are among the oldest and best un-

derstood types of dynamical systems, yet little is known
about their collective behavior. Recently there has been a
great deal of interest in coupled oscillators, in part be-
cause they arise in many branches of science, and also be-
cause of a broader interest in high-dimensional dynamical
systems [1-9].

The problem studied in this Letter was originally in-

spired by the biological phenomenon of mutual synchron-
ization [I]. In some parts of southeast Asia, thousands of
male fireflies gather in trees at night and flash on and oA'

in unison. Other examples include chorusing of crickets,
synchronous firing of cardiac pacemaker cells, and meta-
bolic synchrony in yeast cell suspensions [1]. A simple
model of such systems consists of a population of coupled
phase-only oscillators with distributed natural frequen-
cies. The governing equations [2] are

~ K
0; =ko;+ —g sin(0, —0;)

for j =1, . . . , N)&1. Here 0; is the phase of oscillator i,
co; is its natural frequency, and K~0 is the coupling
strength. The frequencies are randomly chosen from a
probability density g(ka), assumed to be one-humped and
symmetric about its mean. By choosing a rotating frame
at the mean frequency, we may assume that g(ka) has
mean zero. For simplicity, the coupling in (I) is all-to-
all, corresponding to mean-field theory as A'

Early studies [1,2] of Eq. (I) revealed a beautiful con-
nection to equilibrium statistical mechanics: A phase
transition occurs at a critical coupling given by K,.
=2/trg(0). For K &K, , the system relaxes to an in-

coherent state with each oscillator running at its natural
frequency, but for K & K„mutual synchronization occurs
spontaneously in a small group of oscillators. This transi-
tion can be described by a complex order parameter

i're'~=N 'g~e ', where r measures the phase coherence
of the population. In the limit of infinite N, Kuramoto
[2] determined the steady values of r self-consistently.

He showed that incoherence (r=0) is always a steady
solution, but a branch of partially locked solutions (r & 0)
bifurcates supercritically from incoherence at K, .

It has turned out to be a much more delicate matter to
analyze the stability of the steady states. In particular,
there has been a controversy about the relaxation to in-

coherence for K & K, Kuramoto and Nishikawa [8]
have proposed two theories, one predicting algebraic re-
laxation of the order parameter r(t), and the other pre-
dicting exponential relaxation. Numerical simulations
show an approximately exponential relaxation, at least
for K close to K, . Yet this result seems paradoxical in

view of our recent proof [9] that the incoherent state is

linearly neutrally stable below threshold, and that there
are no exponentially decaying eigenfunctions in this case.

In this Letter we clarify the subthreshold behavior of
Eq. (I). We show that the order parameter r can decay,
even though the incoherent state is neutrally stable. The
decay mechanism is closely related to Landau damping of
waves in collisionless plasmas [10], a phenomenon which

created its own share of confusion about thirty years ago.
Our analysis accounts for the exponential decay observed
near K, , but shows that for g(ko) with compact support,
this decay is confined to intermediate times; at long time,
the decay is slower than exponential.

We begin by writing the dynamics in the infinite-4
limit. Intuitively, one should imagine each oscillator as a

particle moving around a circle. For each frequency cu,

let p(O, t, ko) denote the density of oscillators at angle 0 at
time t, and let v(O, t, ko) denote the local velocity. Then p
satisfies the continuity equation Bp/k)t = —0(pv)/80; this

merely expresses conservation of oscillators of frequency
ko. Here the velocity v(O, t, ka) is given by

[ 2n f'c
v = to+ KJl J stn(4t —0)p{kl,t, ko)g(ka)dko Crit,

where we have used the law of large numbers to replace
the sum in Eq. (1) by an integral. [Similarly, the order
parameter becomes re'~= fo'f e' p(0, t, ko)—g{ka)Cko
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dO. ] Thus we have a nonlinear integro-partial-diA'erential
equation for p. We also require p to be 2x periodic in 0,
with p~ 0 and fgpd8=1.

Ultimately one would like to understand the global dy-
namics of this system. For now we restrict ourselves to a
linear analysis about the fixed point p(O, t, ro) =1/2ir,
which corresponds to the "incoherent state. " Let

compact support [—y, y]. Then A is a bounded linear
operator; hence c(t, rp) and R(t) are both analytic in r.
Moreover, these functions grow no faster than exponen-
tially in t, and so the Laplace transforms c(s, ai) and
R(s) are well defined for Re(s) su%ciently large. Now
we Laplace transform (3) and (4) and solve for R(s).
The result is

p =1/2m+ c[c(r,ai)e' + (complex conjugate)

+(higher harmonics)],

(cpg)*(s)
R s

1
—(K/2)g*(s)

' (6)

where e(&1. We write the perturbation in this way be-
cause the order parameter depends only on c, and not on
the higher harmonics:

(2)r(I) =2ze c(r, rp)g(rp)drp .

Furthermore, at O(e) the amplitude equation for c(t,co)
decouples from the other harmonics:

Bc . K
i roc+—— c(t, v)g(v)d v.

4 —oo
(3)

Hence we may ignore the higher harmonics altogether.
The right-hand side of Eq. (3) defines a linear operator

A which has both a discrete and a continuous spectrum.
The discrete spectrum is given by solutions to (K/
2)f— (k+iro) 'g(rp)dro = l. For g(ai) even and non-

increasing on [0,~), there is either no solution for k (for
K ~ K„), or a unique, positive real solution which tends
to zero as K K,+. In particular, 3 never has negative
eigenvalues. The continuous spectrum exists for all K, is

pure imaginary, and is given by [irp:g(ro)AO[. These
facts [9] show that the incoherent state is linearly neu-

trally stable below threshold.
Our new results concern the subthreshold behavior of

r(t). Since the integral that appears in Eq. (3) is so
closely related to r(t) by Eq. (2), we introduce the nota-
tion

R(r) = c(i, rp)g(rp)drp. (4)

Note that Eq. (3) may be solved easily for c(r, rp) in

terms of R(t) and the initial condition cp(rp)—=c(0,rp).
When the result is combined with (4), we obtain the
linear integral equation

R(r) =(cpg)(r)+ —) R(i —r)g(r)dr,K
2

(5)

where the hat denotes the Fourier transform: g(r)
=f— g(rp)e ' 'dao. Hence our problem reduces to un-

derstanding R(t).
The asymptotic behavior of R(t) depends crucially on

whether g(ai) is supported on a finite interval [—y, y], or
the whole real line (these are the only possibilities, by our
hypotheses on g). We focus on the simpler case of g(rp)
with compact support; the case of infinite support will be
discussed briefly near the end of this paper.

Assume from now on that K (K, and that g(rp) has

where the asterisk denotes an operation related to the
Hilbert transform: f*(s)=f f(ro—)dip/(s+irp)

The long-term behavior of R(t) is controlled by the
singularities of R(s). For g(ai) supported on a finite in-

terval, these singularities will include branch points as
well as poles. Equation (6) shows that R(s) is analytic
and single valued in the region C —i [ —y, y], i.e., away
from the continuous spectrum of A. To see this, note first
that the denominator of R(s) vanishes precisely when s is

in the discrete spectrum of A. Hence, for K &K„ the
denominator net er vanishes. Second, the functions
(cpg) and g* are analytic in the region C i[—

y, y—],
because

Q y
(cpg)*(s) - (s+iro) 'cp(ai)g(ro)drp

4 —y'

defines (cpg)* unambiguously as a single-valued analytic
function in this region.

Now we can obtain our first theorem: Suppose that
g(ro) has compact support [—y, y]. Then for any
nonzero initial perturbation cp(ai), R(t) decays more

slowly than any exponential as t . The proof is by
contradiction, and involves analytic continuation and
Liouville's theorem. Suppose that (R(t)( ~ Ce " for all

i & 0, for some a & 0. Then R(s) would be analytic in

the region Re(s) & —a, by a standard theorem about La-
place transforms. Hence the left-hand side of Eq. (6)
would be analytic in the region Re(s) & —a, whereas the
right-hand side is analytic in the region C —i [ —y, y].
These two regions overlap on an open set, and their union
is the whole complex plane C; by analytic continuation,
R(s) must be analytic on all of C, i.e., entire. But Eq.
(6) shows that R(s) 0 as ~s~ Oo [since (cpg)*(s)

0 and g*(s) 0]. Hence R(s) is a bounded, entire
function which vanishes as ~s ~

~. By Liouville's
theorem, R(s)—=0. This implies that R(t) =0 for all t,
since R is analytic in t. Then (5) implies (cpg)(r)=0.
Hence cog=0 and so co=0 for all m in the support of g.
But this contradicts our assumption of a nonzero initial
perturbation. Hence R(t) cannot be bounded above by
any decaying exponential.

Nevertheless, R(t) does tend to zero as r ~. The
proof is technical, so we outline the ideas. First one uses
the Paley-Wiener theorem [1 I] to show that if cpg 6 L2

and K & K;, then R E L . Hence R =h, for some h

6 L . Now the key step is to show that this h has
Pnite support lying inside [ —

y, y], and so R(r)
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R(t)= '.
2ni r

1
—(K/2)g*(s)

o erig tor thewhere t e contour I is a vertical line to the ri ht f
imaginary axis. Now choose the branch cuts of * as
shown in

us 0 g as

In or
ig. 1, and deform the contour to I

' as h

n order for this deformation to be valid, we need R(s) to
an . ence Eq.e analytic in the region between I d I '. H

( ) requires us to consider not g* b t 't Iu i s ana ytic con-
tinuation G(s), given by G(s) =g*(s), for Re(s) & 0;
G(s) =g*(s)+trg(is) for Re(s) =0; and G(s) =g* s
+2trg(is), for Re(s) & 0. For K & K, , the resulting ana-
ytic continuation of R(s) has poles in the left half plane

given by the solutions of 1
—(K/2)G(s) =0' th

are the fake eie a e eigenvalues that contribute exponentially de-
caying terms to R(t)

For instance, consider the uniform density g(c0) =1/2y

Re(s) &0. Hence for K &K,. =4y/tr, there is a single
is predictedake eigenvalue at s=ycot(2y/K) &0. This

exponential decay rate agrees well with that observed nu-

tions obtained from integration along the branch cuts;
t ese yield slowly damped oscillatory terms with frequen-
cy y, as also seen numerically [Figs. 2(a) and 2(b)]. At
long times, t e decay is slower than exponential (ia as ex-
pec e ) and is well fitted by a power law t ~ with P) 1

[Fig. 2(b)]. Asymptotic analysis of (7) for uniform g(tu)

(7)

=f "-„h(tu)e '"'den. Then the Riemann-Lebesgue lem-
ma yields R(t) 0, as desired Th f f

tia follows f
representation for R(t) should seem plausible —it essen-

~ ~

to E . (6).
y rom the Laplace inversion formul 1 du a appie
q. . One chooses a finite branch cut on the imagi-

nary axis between +iy, and then wraps the inversion
contour around this cut.

By manipulatin thp
'

g e inversion contour, we can also ex-
plain the exponential decay observed numerically for K
just below K, . At first such behe avior is puzzling, given
the theorem abovh bove and the absence of exponentially de-
caying eigenfunctions. The explanation involves "fake ei-
genvalues" that arise via analytic continuation [12]. For
concreteness, let cp(N) =1. Then

shows that R(t) ——16yK -( 1
— )- t n-t srnyt as t—

[14]. This formula correctly predicts damped oscillations
at frequency y, with a decay slightly faster than 1/t, but
it is not quantitatively accurate until t i v ).i is very arge.

Different behavior occurs if g(to) is supported on the
whole real line. In particular, pure exponential decay be-
comes

Impossible.
For instance, if cp(to) =1 and g(t)

=e "', corresponding to a Lorentzian g(ru) =( / )(Mtu, t en Eq. (5) has the exact solution R (t )
=e ' ' for t ~ 0. In the extremely well-behaved case
where (tu) and cg p&co are ent~re functions, the contour
deformation argument above shows that R(t) is a sum of
decaying exponentials. More complicated behavior can
arise if the initial conditions are less smooth; e.g. , if we

emand only that cp 6 L, then any R(t) E L- can be
contrived by an appropriate choice of cp [14].

The behav' ior discussed here is closely analogous to

T
Landau damping of waves in collisionless plasmas [10].

he distribution over natural frequen
'

encies in our osci ator
mode1 corresponds to a distribution over velocities in the

p asma model. The mean-field nature of the plasma
problem is due to the fact that the individual particles
respond to the electric field which is generated by an in-

tegral over all the particles. Hence the electric field plays
the role of our or~er parameter. To see the analogy in

more detail, we brieAy recall the Vlasov model for a plas-
ma. For particles of mass m and charge e, the collision-
ess Boltzmann equation in one dimension is

r)F r)F e r)F+( +—E =0,
"r)1 Bx m r)i

where F(x ( t) iss the number density of particles with
velocity v at position x, and E is the electric field.
Suppose we have an equilibrium in which E =0 and
F(x, i t) =F (v&p ~. Then introducing a density perturba-
tion f and linearizing yields

sf+ af+ E ()
t)t r)x m 8v

tion
~here E is determined self-consistently by Poisson's equa-

0.002,—

0.001

predicted
slope

R 0

60
-0.002
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FIG. 1. Deformed ccontour I for Laplace inversion integral
I

(7), for g(ap) with compact support 1 —
y, yl. Heavy lines,

branch cuts; cross, pole.

FIG. 2. Numerical solution for R(t) in Eq. (5), assuming

R(t) decays exponentially for 10» t »80. F'or comparison,
line segment shows predicted decay rate s =ycot(2 /K)

e oscillatlons in R(t) have frequency = . (b)
s =/co

At ion timg imes, R(t) decays slower than exponentially.

= y'.
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rJE e "™
fdv.

r)x ao"—
Fourier transforming these equations in space and elim-
inating E yields

r) . - ie' r)Fo= —ikvf+ fdv.
r)t km' Bv 4—

Equation (8) is very similar to Eq. (3), with f and v play-
ing the roles of c and co, respectively. The analysis of Eq.
(8) reveals many of the same peculiar features seen here:
a continuous spectrum on the imaginary axis, the need for
analytic continuation, the existence of fake eigenvalues,
and the fact that the electric field can decay exponentially
(Landau damping), even though the density perturbation
does not [10,12].

The physical interpretation of Landau damping is that
one can find a distribution of particles in velocity space
which does not decay but which combines as time
progresses in such a way that the electric field decays ex-
ponentially. Similarly for the oscillator problem, the os-
cillators can spread out around the circle, becoming more
well mixed by the difference in their frequencies, so that
the order parameter decays to zero. Thus in both cases
the damping is due to phase mixing, modified by a self-
consistent decaying field.
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