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Distribution of Roots of Random Polynomials
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We consider polynomials of high degree with random coefficients which appear in the context of

"quantum chaotic" dynamics and investigate various conditions under which their roots tend to concen-
trate near the unit circle in the complex plane. Correlation functions of roots are computed analytically.
We also investigate a certain class of random polynomials whose roots cover, in a uniform way, the
Riemann sphere. Special emphasis is devoted to the influence of symmetries.
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(I) The main purpose of this Letter is to discuss prop-
erties of roots of polynomials of high degree with random
coefficients. This kind of problem naturally arises in
difTerent branches of physics (see, e.g. , Ref. [1], and
references therein). Our investigation was motivated by
the problem of obtaining the eigenvalues and eigenvectors
of "quantum chaotic systems. "

From a statistical point of view, one usually assumes
that the highly excited energy levels of a chaotic quantum
system should be distributed as eigenvalues of a certain
ensemble of random matrices [2,3]. In proving this con-
jecture the main difficulty comes from the fact that it
does not seem easy to naturally attribute a random ma-
trix to a quantum system. On the other hand, many
efforts have been devoted to obtaining the quantum spec-
trum from semiclassical sums over periodic orbits (see,
e.g., Ref. [4]). In one of these approaches, developed in
Ref. [5], the dynamical zeta function —whose zeros give
the eigenvalues —is written in the form

P(z) =det(1 zT), —

where T is a N XN matrix corresponding to the semiclas-
sical reduction of the full quantum problem into a dis-
crete mapping (quantum Poincare map), and as such it
should be a unitary matrix [6]. Expanding the deter-
minant, the characteristic polynomial P(z) takes the
form

N

P(z) = g aiz".
k~0

In the leading 6 approximation T is approximately uni-

tary; hence the roots of P(z) lie close to the unit circle—denoted by 8—in the complex z plane. The coeS-
cients [al, } are related to certain sums over classical
periodic orbits [5]. These sums are rapidly varying func-
tions of energy and a simple approximation is to consider
them as random variables. We are thus led, through the
semiclassical approximation, to consider random polyno-
mials instead of random matrices. The main question is
to determine what simple conditions have to be imposed
on the distribution of the [ak} in order that all or at least
a finite fraction of the roots of the polynomial (1) lie on
(or near) C (i.e., the T matrix will be approximately uni-

tary).
A necessary condition is the self-inversive (SI) proper-

ty

a~ —k e ak

which holds in the semiclassical approximation [5] and in

actual computations reduces the number of periodic or-
bits that must be taken into account. This is by no means
a sufficient condition. The exact conditions that all roots
of polynomial (1) lie on C are certain complicated deter-
minantal inequalities for the coefficients [7], which seem
to be intractable. In this context, let us mention the
theorem of Yang and Lee [8], which is an example of a
diA'erent mechanism of putting all roots of a polynomial
on P.

In part (3) we shall demonstrate that in the limit
N ~ the vanishing of the first moments of the [ak} and
certain conditions of boundedness of their second mo-

ments are enough to ensure that most roots lie near the
unit circle. In part (4) we show that if one imposes the
SI condition (2) then a finite fraction of the roots lie ex-
actly on the unit circle. Assuming that the real and

imaginary parts of the complex coefficients [aq}, with

k =1, . . . , [N/2], are independent real-valued Gaussian
random variables (henceforth denoted as a GRI distribu-
tion), we compute analytically the two-point correlation
function of the roots lying on C and find a linear repul-
sion among them. Part (5) deals with, in some sense, an

opposite problem taken from the investigation of quan-
tum chaotic dynamics of models with a compact phase
space [9,10]. As explained below, in an appropriate rep-
resentation the quantum eigenstates can also be written
in the form of Eq. (1), the complex variable z spanning
the phase space of the system. Looking for a quantum
analog of the classical ergodicity, we now want to find the
conditions under which the roots of polynomial (1)
spread over the complex plane. It is shown that if the
complex coefficients [ai} have a GRI distribution with

zero mean and second moments given by ok =a Cjv
2 2 k

(where Cjv are the binomial coefficients and rr is arbi-
trary), then the density of roots is uniform on the
Riemann sphere for all N. In part (6) we consider a par-
ticular model —the quantum top—and show how the ex-

2726 1992 The American Physical Society



VOLUME 68, NUMBER 1S PH YSICAL REVIEW LETTERS 4 MAY 1992

D(a0, a~, . . . , an)d a0d a~ d aN. (3)

Transforming variables from the coefficients [at, j to the
roots [zt, j by standard formulas, one obtains the distribu-
tion function of the [zkj:

(a0 zI ~ ~ ~ ZN) laol
'

XP(zJ —zp( dadz dz
j&k

where the function $(ao,z~, . . . , Zjv) results from the
substitution [at, (zq)j into the function D(a0, a~, . . . , an)
and the factor Q(zj —zt, ) comes from the Jacobian of
the transformation. This factor plays a crucial role in the
correlations of roots of random polynomials.

Suppose now that the distribution of the coefficients
(3) has its maximum when all aq 0. For example, that
would be the case if the coefficients were uncorrelated
random variables and the distribution function of each
coefficient had its maximum at a 0. It is possible to
show that in the limit N ~ the integral (3) has a sad-

1
h ~2/ev(e), „,dye ~ + dx dpexp—(z/~2) I/2 J) 40 a)0

istence of a symmetry leads to a concentration of the
roots of the eigenfunctions on certain calculable phase-
space lines.

We shall discuss each section briefly, and details will be
published elsewhere [11].

(2) The main technical tool which we shall repeatedly
use is a generalization of Kac's method [1,12] which was
originally used to compute the mean number of real roots
of a polynomial with random real independent coefficients
[12].

Let f(x) be a real-valued random function; we are in-
terested in computing the density of roots,

p(x)=—gb(x xt, ) -—b(f(x))if'(x)i.

Representing b(x) and ~x( as

h oo h oo

b(x) - ' e'~" )x) - " (1 —e'"")
4 2x Q —oo ~q2

one obtains a very suitable method for computing the
mean value of the density of roots because averages over
the independent random coefficients of f(x) can be eas-
ily performed. Knowing p(x), the correlation functions
of roots can be calculated from the definition R„

(p(x ~) p(x„)),where the symbol ( ) denotes ensem-
ble average over random coefficients. It is not difficult to
generalize these expressions to complex-valued functions.

(3) Let us assume that the complex coefficients of poly-
nomial (1) have a distribution function

d)e point when all the coefficients except the first and the
last are zero. This corresponds to equally spaced roots ly-

ing near 8,

2x
(zq),~=rN exp i k+p, k =0, . . . ,N —I, (4)

where rN 1 as N . We shall call this configuration
the crystal, and the phenomenon of the dominance of this
saddle-point configuration, the crystallization of roots on

C. This saddle-point solution exists under very general
conditions [13],but its influence on the distribution of the
roots will mainly depend on the second moments of
[apj. If they are small [i.e., the maximum of D(a0,
a~, . . . , ajv) is sharp] then the crystallization will be
strong, resulting in the attraction of the N roots near 8
[1];if, on the contrary, the second moments are large, the
saddle point (4) will be irrelevant and roots may spread
over the complex plane (we shall refer to this
configuration as the liquid phase). This balance between
the crystalline and liquid phases is a general phenomenon
when studying roots of random polynomials of high de-

gree.
(4) Thus, the large-N limit permits, under rather gen-

eral conditions, a concentration of the roots of random

polynomials near 8 but not, in general, on it. We now

explore the consequences on the distribution of roots of
the Sl symmetry (2), when only half of the coefficients of
the polynomial can be chosen freely. Polynomials obey-
ing Eq. (2) satisfy the functional equation

N —
I

P(z) =I+ g a,z"+z',
k t

(5)

where the jakj, k=1, . . . , [N/2], are GRI-distributed
complex variables, all having the same second moment o.

and aN —p =ay. We compute the average number n of
roots of this polynomial lying on 8 as a function of a and
find that, to leading order in 1/N, it only depends on the
scaled parameter e=JNa. The fraction v(e) =n(e)/N
of roots lying on 8 is given by

I 2 +3sin Pcos +
x

P(1/z ) -exp( iy)P(z)/zn—,

from which it follows that if zp is a root, then I/zt, is also
a root, i.e., the roots either lie on C or are symmetrically
located under inversion with respect to it. By substitution
z exp(i8), self-inversive polynomials transform into real
trigonometric polynomials and Kac's method can be used
to compute statistical properties of roots lying on 8.

As an example, we consider the SI polynomials of the
form

As e 0, v(e) 1 as expected from Eq. (5) since P(z) 1+z, and the roots are distributed on C" according to the
crystal lattice (4). On the other extreme, when e ~, we get v(e) 1/J3. The "unitarity" implemented
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by the SI symmetry is thus quite strong, since even in the
latter limit the average number of roots remaining on C
does not tend to zero but approaches 58% of the total
number. This "macroscopic" number of roots lying on C
because of the SI symmetry should be compared to the
(lnN)/N fraction of real roots obtained by Kac in the
case of algebraic polynomials with real random coeffi-
cients [12].

We have also computed, for arbitrary o and N, the
two-point correlation function Rz(z) =(p(8)p(8+ z)) for
the set of roots remaining on P. In Fig. 1, R2 is

displayed as a function of the scaled parameter 6
=rN/2tr in the limit o ~. For short distances we ob-
serve a repulsion between the roots. Notice, however,
that R2(r) is different from the random-matrix result for
the orthogonal ensemble. In particular, for large N the
slope at the origin of R2 is /r /IOJ3, in contrast to the
n /6 result for eigenvalues of random matrices. The
long-range behavior shows pronounced oscillations which
are remnants of the crystalline structure existing for
0 =0.

(5) Consider now a slightly different class of polynomi-
als, the ones taking the form

N

P( ) g (Ck ) /2 k

0
(6)

This kind of polynomial arises when considering the
quantum mechanics of a spin S system whose modulus S
is conserved. Using the spin coherent-state representa-
tion, it can be shown [14] that an arbitrary quantum
state of the (2S+1)-dimensional Hilbert space can be
written as in Eq. (6), where the coefficients [ak} define
the state and N=2S. The appearance of the factors
(C~) '/ in Eq. (6) has a purely kinematical origin and is

intimately related to the geometry of phase space, the
two-dimensional unit sphere [the radius of the sphere is

given by ha S(S+1),which we normalize to unity]. The
complex variable z is connected to the variables (8, tIt)

spanning the Riemann sphere through the stereographic
projection z cot(8/2)exp(ip). Lebo:uf and Voros have

recently studied [9] the distribution of roots of eigenstates

of classically chaotic systems and found that, as opposed
to eigenstates of integrable systems, in the semiclassical
limit N ~ the roots tend to fill the whole phase space
in a more or less uniform way. This ergodicity manifest-
ed by the distribution of roots of eigenstates of chaotic
systems was interpreted as a quantum signature of chaos.

In order to further investigate this problem, we consid-
er the distribution of the roots of Eq. (6) when the com-
plex coeflicients [ak} have a GRI distribution with the
same standard deviation o [15]. As discussed before,
since the second moments are now large, the roots of
P(z) will spread over the complex z plane (liquid phase).
The question is whether, at least in the semiclassical lim-

it, the ergodic behavior of the roots is obtained. Using
Kac's method, we prove that for all N the distribution of
roots is uniform over the Riemann sphere,

(p(z))d z =— = sin8d8dtk.
N dz A'

/r (1+
~
z (

') ' 4z
(7)

In proving this theorem, the binomial coefficients in Eq.
(6) play a crucial role and a similar result cannot be ob-
tained with other factors. To check the sensitivity of this
result when the distribution of the coefficients is changed,
we also consider a uniform distribution of coefficients.
Although in this case Eq. (7) does not hold for finite N, it
is recovered in the large-N limit.

(6) As was shown in part (4), if the roots of a polyno-
mial are symmetric with respect to a certain line due to
the existence of some functional equation, then the proba-
bility of having roots lying on that line is greatly en-
hanced. The influence of a symmetry in the distribution
of roots is a general phenomenon. Two examples are pro-
vided by the concentration of roots on the real axis in the
case of random polynomials with real coefficients [12],
and the concentration on 8 of roots of SI polynomials.
An extreme case is the Riemann zeta function.

To further illustrate these ideas, we consider a kicked-
spin model quantum mechanically described by the
one-step evolution operator [10,16] U =exp( —ipS„)
&&exp( i pS, /2). T—he stationary equation UIf,)

=exp(iro, ) ~f,) determines the eigenphases to, and eigen-
states (f,) of U. The operator U commutes with two an-
tiunitary operators [16]

txSz i~S» K T
—(I S» isSy

] =e e, 2=e e

1.0

FIG. l. Two-point correlation function R2 of the roots lying
on C for the Sl polynomial (5) and W =47.

where K is the usual antiunitary complex conjugation
operator. They satisfy T~ =T2 =1 and the time-reversal

property T~UT~ =T~UT2=U '. These two symmetries
are nongeneric in the sense that (i) they are not just the

conjugation operator usually connected to time-reversal
invariance and (ii) they depend on the parameter p con-

trolling, together with p, the dynamics of the system. As

explained before, in the coherent-state representation
every eigenstate can be written as in (6), the coefficients

a~ being obtained from the stationary equation. Because
of these symmetries, the polynomial P, (z) associated to
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in random-matrix theories [3,16].
One of us (E.B.) was supported by the ENS-Landau

Institute agreement. Division de Physique Theorique is a
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FIG. 2. The superposition of the roots of all eigenfunctions
of the kicked-spin quantum map for S =30, p =1,p =4m.

~f,) must satisfy P,(z) =P,(7'jz), j=1,2, where the 7'J.

are the classical versions of the quantum operators T~. If
z„is a root of P, (z), then 7'Jz„will also be a root. We
therefore expect a strong concentration of roots of eigen-
states of U on the symmetry lines Tjz =z, j=1,2. In the
stereographic variables (8,&), they take the form

1 + cospcos()= ~ sinlli sin p+ 1+cosp

' I/2

(8)

the upper and lower sign holding for the Ti and T2 sym-
metry, respectively.

Figure 2 shows the superimposition of the 60 roots of
the 61 eigenstates obtained numerically for S=30, p =1,
and p =4m, which classically corresponds to a fully chaot-
ic dynamics [10]. We observe the expected concentration
of roots on the two symmetry lines (8), a free-of-roots re-
gion close to them, and a tendency to cover in a more or
less uniform way the remaining phase space.

An extra term in the propagator, like exp(ikSr ),
breaks both antiunitary symmetries and the strong con-
centration of roots on the symmetry lines disappears.
Now we obtain an approximately uniform distribution of
roots over the phase-space sphere, in agreement with the
results of section (5). Another manifestation of such T
symmetry breaking eA'ect is the GOE GUE transition

~"'~On leave from Landau Institute for Theoretical Physics,
142432 Chernogolovka, U.S.S.R.
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