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Optimal Paths and the Prehistory Problem for Large Fluctuations in Noise-Driven Systems
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A prehistory problem is formulated for large occasional fluctuations in noise-driven systems. It has
been studied theoretically and experimentally, thereby illuminating the concept of optimal paths and
making it possible to visualize and investigate them. The prehistory probability distribution measured
for a white-noise-driven system, taken as an example, is shown to be in agreement with the theory.
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Fluctuations in physical systems can often be viewed
[I] as arising because of external noise. Under stationary
conditions, a weak-noise-driven system fluctuates mostly
about its attractor (or attractors, if several of them coex-
ist). However, there is also a small probability that the
system will be found at a position in phase space far from
an attractor. It is just these large deviations from the
average that are responsible for a number of interesting
physical phenomena, e.g. , for switching in a variety of
multistable systems (including multimode lasers, passive
optically bistable systems, and Josephson junctions) and
large-angle scattering (in particular, that of light) in

nearly homogeneous media.
A convenient and powerful approach to the analysis of

the tails of the probability density distribution p(x)
(where the components of the vector x enumerate the
dynamical variables of a system) for systems driven by
Gaussian noise is based [2-8] on the method of optimal
fluctuation [9]. This approach exploits the idea that the
tails of p(x) must be formed by large occasional out-
bursts of noise f(t) that push the system far from the at-
tractor. The probabilities of such large outbursts are
small, and the value of p(xf) for a given remote xf will

actually be determined by the probability of the most
probable outburst among those bringing the system to xf.
This particular realization is just the optimal fluctuation
for the given xf. Because a realization (a path) of noise
f(t) results in a corresponding realization of the dynami-
cal variable x(t), there also exists an optimal path
x pi(t, xf ) along which the system arrives at xf, with an
overwhelming probability. Although eminently reason-
able and highly successful, such approaches have lacked a
direct basis in experiment —the existence of optimal
paths never having been demonstrated —and, to this ex-
tent, the use of the method of optimal fluctuation has
amounted to an act of faith.

In this Letter, we propose a new approach to the inves-

tigation of rare events in noise-driven systems, addressing
ourselves directly to the question of how one of these
events (i.e., the arrival of the system at xf) comes to

occur. In doing so, we evolve the system backwards in

time from the chosen event and we define a new statisti-
cal quantity, the prehistory probability density, that de-
scribes the distribution of paths ending at xf. The ridge
along the top of this distribution, representing the most
probable path, is identified with the optimal path of the
earlier studies; the width of the distribution provides a
measure of the degree to which individual paths deviate,
on average, from the optimal one.

If a point xf lies far from the attractor, so that p(xf) is

small, the time intervals between successive passages of
xf will be large; they will considerably exceed both the
characteristic relaxation time of the system r, and the
noise correlation time r, . The arrivals of the system at
xf are therefore mutually uncorrelated. Since the mo-
ment of observation is the only instant of time singled out
under stationary conditions, there arises the following
prehistory problem: What is the probability density
ph(x, t;xf, tf) that the system was at a point x at time( tf, if at tf it is at xf'? We stress that p& (x, t;xf, tf ) is

not a standard two-time transition probability: It is given

by a ratio of the three-time transition probability
w(xf, tf, x, t;x;, t;) (the probability density of the transition
x' x xf ) to the two time one, -w(xf, tf,x;, t; ), with the
initial instant t; having been set equal to — so that
both t; and the initially occupied position x; have dropped
out from ph(x, t;xf, tf), according to the above arguments.
We note that a similar ratio of transition probabilities, al-

though in eA'ect for finite tf —t;, has recently been con-
sidered [10] in order to clarify the relationship between
time irreversibility in thermodynamics and in cosmology.
Obviously, pt, (x, t;xf, tf):—p (xt, t —tf xf,0)

Since prior to reaching xf the system had been fluc-
tuating for a long time, the probability density p&(x, t;
xf, lf ) goes over into the stationary distribution for large

lf —t, that is, pit (x, t;xf, tf) p(x) for tf —t ~. Be-
cause (by definition) the optimal path x pi(t tf,xf) is-
the most probable path for reaching xf, the function

ph (x l,xf lf ) at a given t —tf should have a sharp max-
imum in x lying along that path x=x,p&(t

—tf xf)
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Therefore, by investigating the prehistory probability
density p&(x, t;xf, O) experimentally one can find not only
the optimal paths themselves, but also test immediately
the general concepts of optimal path and optimal fluctua-
tion and establish the range of parameters and the area of
phase space within which these concepts are applicable to

any given system. Before reporting, below, the results of
an experiment on a particular system, we will discuss in a
more general way the physics of the problem and the type
of behavior to be anticipated.

By definition, the distribution pt, (x, t;xf, tf) is expressed
in terms of the probability density functional:-[x(t)] of
the paths x(t) of a noise-driven system as

X(1f) If ~x&tf) =xf
ph(x, t;xf, tf)

& &
Sx(t) b(x(t) —x):-[x(t)]

& &

Sx(F):-[x(F)]

x(t) -—U'(x)+ f(t), (2)

where f(t) is stationary, zero-mean, Gaussian noise with
the frequency-dependent power spectrum (colored noise)

@(to) „dtexp(itot )(f(t)f(0)& (3)

[@ '(to) is supposed to be of the form of a polynomial in

to ]. For such noise the probability density functional
can be written as

P[f(t)] =exp

T

dt f(t)F i f(t), —(4)

F(to) =D/e(to), D=e „(to).
We have singled out here explicitly the characteristic
noise intensity D. It is assumed small (the criteria are
given below).

The main term in the prehistory probability density
ph(x, t;xf, tf) is determined by the probability of the most
favorable realization of noise bringing the system to xf at
tf from the vicinity of the equilibrium position x,q, via
the point x, at the moment t. Following the arguments of
Ref. [9] one can show that

the value of pt, (x, t;xf, tf) being given by the relative
~

numbers of those paths ending in xf at tf that passed the
point x at the instant t ( tf. We note that the boundary
condition for t —ao in (I) is arbitrary, strictly speak-
ing: The system quickly gets randomized and will have
forgotten its initial position prior to the fluctuation bring-
ing it to xf at tf. In what follows, we assume that the at-
tractor is a stable state, and that x« in (I) is the position
of this state.

The probability density functional:-[x(t)] for a system
driven by Gaussian noise was analyzed in Ref. [I l]. A
simple approximate expression for =[x(t)] that gives the
main term in p&(x, t;xf, tf) can be obtained by making
use of Feynman and Hibbs' idea [12] of the direct inter-
relation between =[x(t)] and the probability density
functional of the noise P[f(t)] (this idea has already
[3,9] been applied to the problem of optimal fluctuation).
To illustrate the approach we shall consider in what fol-
lows the case of a system described by one dynamical
variable, x, and assume the equation of motion to be of
the form

pt, (x,t;xf, tf) =pt, (x, t —tf,xf,O)

=Cexp[ p(—x, t —tf xf)/Dl,

p(x, t;xf) p(x, t;xf) p(xf, 0—;xf), p(x, t;xf)))D,

(5)

%[fx t xf] = — dtf(t)F —i f(t)1
' . d

4 —oo dt
(6)

+ dt A, (t )[x+U'(x) —f(t )],
with boundary conditions

f(~ )=0, ~( — )=0, x( — )=x.,
x(t) =x, x(0) =xf .

(7)

The minimum in (6) is taken over f(t), k(t), and x(t)
independently. The second term in % does not contribute
to p(x, t,xf); it has been added to allow for the interrela-
tion (2) between the paths of the noise and of the system.
We note that A, (t), the highest-order derivative in

F( —id/dt)f(t), and (for white-noise-driven systems) x
are discontinuous at the singled-out moment t =t. The
inequality in (5) provides the required criterion for the
weakness of the noise.

The term P(xf, O;xf) is subtracted from p(x, t;xf) in

(5) to allow for normalization in (l). This term gives [9],
to logarithmic accuracy, the stationary distribution of the
system, D lnp(xf) = —p(xf, 0;xf). Because the value of
p(xf, O;xf) is determined by the most probable path
x pi(t xf ) that leads to xf without the additional limita-
tion of passing a given point at a given time, p(x, t;xf)
~ p(xf, O;xf). It is obvious from (6) and (7) that only
for x coinciding with xppi(t;xf) (for a given t) does
p(x t xf ) equal p(xI, O;xf ). Thus the maximum of the
prehistory probability density pt, (x,t;xf, O) is indeed
achieved on the optimal path,

p(x,p, (t;xf), t;xf) =0.
Away from the optimal path pI, decreases exponential-

ly, according to (5)-(7); for weak noise, its shape is

where p(x, t;xf) is given by the solution of the following
variational problem:

p(x, t;xf) =min'Ji[f;x, t;xf],
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Gaussian near the maximum,

p(x 1,xf )= [x x—opt(1 xf )] /2rJ(1;xf)

Ix —.„(1;xf)I«Ix„„—fI.
(9)

city is most pronounced when the equilibrium position x,„
is that of a metastable state and the point xf lies close to
the local maximum x, of the potential U(x) [U'(x, ) =0,
U"(x, ) &0]. In this case the parameter 8(x;xf) can be
written as

This is because the function C in (5) is smooth on the
scale Ax-D' . To analyze p1, (x, t;xf, O) near the max-
imum one can therefore replace C(x, 1;xf) by
C(xop)(1 xf ),1;xf); the latter is given by the condition

fdx p1, (x,1;xf,O) = I.
The explicit form of the dispersion parameter a(t;xf)

in (9) can be obtained in some limiting cases. In what
follows we give the results for the case of white noise
[F(ro) = I in (4) and (6)]. The variational problem [(6)
and (7)l then reduces to

x(1)—U"(x)U'(x) -0 [F(~)=i]
and the optimal path is known to be given by

x,p, =U'(x, p() .

(io)

(iOa)

The latter equation is also the solution of (IO) for 1 ~ 1 in

(6). In the range 0~1&1 for small Ix x,p&(t;xf)I—, Eq.
(IO) can be linearized in x(1) x,p&(t;xf), —and after
some manipulations one arrives at an expression for
o(t;xf) of the form

cr(1 xf )=8(x,p~(1;xf—) xf )

The dispersion of p1, (x, r;xf, O) is determined by the value
of Drj(1;xf). Equation (9), in addition to the exponential
in p1, (x, r;xf, O), also gives the prefactor so that near the
maximum,

p1t (x,1;xf,O) = [Do'(1;xf )//2rrl
'"

&& exp [—[x xop—t(t;xf ) ] '/2Do(1;xf )'] .

(9a)

8(x xf) rx/(x)+rr2(x)(xf —x, )

lxf —x., I « Ix., —x., I,
~p(x) = ——,

' [U'(x)]'[U"(x., )] ', e, &0.

Note that a'~ 2(x) depend smoothly on xf for Ix —x, I

» Ixf —x, I. For x far from both xf and x,„ the function
8(x;xf) increases sharply as xf approaches x, . The evo-
lution of 8(x;xf) with varying xf predicted by (13) for
the simple potential

U(x) = ——,
' x '+ —,

' x ' (i4)

is shown by the curves in Fig. 1; the optimal path predict-
ed by (lOa) is plotted in the inset.

These ideas have been tested experimentally with an
analog electronic circuit model [l3] of (2) and (l4),
driven by weak quasiwhite noise. Starting with the sys-
tem in close vicinity to one of the attractors, successive
blocks of x(1) time series were digitized with a Nicolet
LAB80 data processor, and examined. The moment at
which x(1) eventually reached a preset value xf was not-
ed, and the path by which it had reached that point was
recorded. The process was then repeated, so as to build

up an ensemble average of the paths leading to xf. A
typical example of the resultant prehistory probability
density p1I(x, t;xf, O) is shown in Fig. 2.

It is immediately evident that the distribution is sharp-
ly peaked along a certain path x(1), and it seems reason-

1 xf
o(x;xf ) = [U'(x)]' dy[U'(y)]

The distribution p1, (x,t;xf, O) can be seen from (9) and
(I I) to be extremely sharp for small I1I:

p(x, t;xf) 2 [x xf U (xf)]1 /I1I

IU (xf)(xf X)I « IU (xf)I, I1I (([U (x )]
(i2)

It coincides in shape with the distribution of a particle
diffusing in the absence of an external force: The disper-
sion DI1I increases linearly with the time interval I1I. In

the opposite case of large I1I the value of x,p~(t;xf) lies
close to the equilibrium position x,„where U'(x) van-
ishes. The dispersion parameter o(1;xf) as given by (I I)
is then equal to [2U"(x,q)], i.e., to the dispersion (di-
vided by D) of the stationary distribution p(x).

We note that the dispersion D8 (x;xf ) can be a non
monotonic function of x =x,p, (1;xf) The nonmonot. oni-
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0
0
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0
I

—0.6 —0.4 —0.2
X

0.0

FIG. 1. Dispersion of the prehistory probability density

p/g(x 1 xf, O). The dispersion parameter 8(x;xf ) as u function

of x measured in the analog experiment (data points) is com-
pared with the theoretical prediction (curves) based on (I I) for
(a) xf —0.30, D =0.0701 (circles); (b) xf = —0.55, D
=0.0265 (triangles); (c) xf 0.75, D 0.0085 (piusses). Inset:
The optimal path (curve) predicted by (IOa) is compared with

a path along the ridge (data points) of the experimental distri-
bution for xf = —0.30, D =0.070l.
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ph(x, t; x),0)

driven by white noise; but we emphasize that it is in no

sense restricted to systems of this kind. Rather, it should

be widely applicable to the investigation of rare events in

fluctuating systems in general.
The research has been supported by the Ukrainian
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FIG. 2. The prehistory probability density pt, (x,t;xf, 0) for
(12) and (14) measured in the analog electronic experiment for
a final position xf = —0.30 with D =0.0701.

able to associate this path with the expected optimal path
for the noise-driven system. Except in the limit of very
small t, the shape of this ridge is well described by (10a),
as shown in the inset to Fig. 1. The slope of the theoreti-
cal curve for t 0 differs noticeably from the experi-
ment, however, because (10a) is only valid for )x —x, )»D'; it is this that causes the displacement between
the calculated and experimental curves. A more surpris-

ing feature of the distribution in Fig. 2, which had not
been predicted in advance of the measurements, is the
marked broadening and flattening that occurs in the in-

termediate range of x between x,q and xf', but the latter
behavior is, of course, very much in accord with the argu-
ments given above. A direct comparison of the measured
and calculated dispersion is given for three values of xf in

Fig. I. Although the theory clearly provides a good
description of the general behavior of 8(x), it is also evi-

dent that the calculated increase in 8 is significantly
larger than in the measurements. One of the reasons is

that the theory holds provided (ctD) 'l (& ~x, —x,q~, i.e.,
(xf —x, ~

))D 'i, according to (I 3); whereas, for small

(xf x, (, the Gaussian approximation (9) is inapplicable.
In conclusion, we have presented the first calculations

and measurements of a new statistical quantity, the
prehistory probability density, that illuminates and ex-
tends the concept of optimal paths and which has enabled
us to demonstrate their physical reality. The approach
has been shown to work well, and to yield interesting re-
sults, in relation to the simple example (2) and (14)
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