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A molecular-dynamics calculation on a hydrated protein, crambin, demonstrates that (i) neighboring
dihedral angles are correlated to local transitions in the protein backbone, and that (ii) the amplitude of
collective excitations, representing correlated global motions in the protein, samples multicentered distri-
butions. The time dependence of the multicentered dihedral and collective excitations show rapid transi-
tions from the center of one distribution to another, followed for some time by damped, low-amplitude
motions around one center. The global nonlinear collective excitations are responsible for most of the
atomic fluctuations of the molecule. An analysis appropriate to multimodal conformations is reported.

PACS numbers: 87. I S.By, 87.15.He

The thermodynamic stability of proteins is best under-
stood in terms of an ensemble of nearly degenerate sub-
states spanning a large configurational space [1]. Evi-
dence for the existence of these substates has been ob-
tained experimentally [2] and theoretically [3]. However,
the dynamical characteristics of such systems have not
been studied. Thermally driven protein should exhibit
transitions between configurational substates. Therefore,
the dynamics of a protein will be characterized by non-
linear modes of oscillations where the protein exhibits
fast transitions from one substate to another, in a non-
periodic fashion [4,5]. These transitions should be re-
sponsible for the multiple-time-scale processes observed
in proteins [6]. The character of these nonlinear modes
may involve the correlated motions of a few atoms, i.e.,
localized modes, or collective motions involving the whole
system. We will show that multicentered, nonlinear, col-
lective motions are responsible for most of the atomic
fluctuations. These motions are not describable in terms
of harmonically or anharmonically [7] perturbed motions
around one particular conformation. As a consequence,
the comparison of the mean-square displacements of
atoms during a simulation with the experimentally ob-
served Debye-Wailer factors is termed incorrect [8].
That relationship requires the motions of the proteins to
be unimodal and harmonic [9].

In this work (a) we will show that a hydrated protein
samples multicentered distributions of dihedral angles
that are correlated to local transitions in the protein
backbone; (b) in addition, we observe collective nonlinear
excitations that exhibit multiple-minima transitions.
These motions are extracted from a 240.0-ps, constant-
temperature (300 K), molecular-dynamics simulation on
a hydrated plant protein, crambin. Crambin is a 46-
amino-acid amphipathic protein for which high-resolution
x-ray [IO], neutron diffraction [11], 1D and 2D NMR
studies [12,13], and theoretical studies [14-17]have been
reported. A united atom [18] represen-tation of the pro-
tein consists of 408 atoms, immersed in a box of approxi-
mate dimensions 30 A x 36 A x 42 A containing 1315 wa-
ter molecules modeled by a TIP3P potential [19]. A

residue-based spherical cutoff distance of 12.5 A was
used to truncate all nonbonding interactions. Periodic
boundary conditions were used for Coulombic and van
der Waals interactions between atoms. We used poten-
tial-energy parameters widely used in the literature [18].
The first 24 ps of the simulation are not included in any
averaging, and all the analyses shown in this work are
done with the last 216 ps of the trajectory sampled 20
times/ps. The role of specific water molecules in the pro-
tein dynamics will not be discussed here, but we simply
regard the protein as an open system exchanging energy
with the surrounding water.

The analyses of the trajectories obtained from this
simulation indicate that the protein motion consists of
two main elements.

Localized nonlinear motions The ba.c—kbone dihedral
angles [20] of the protein (p, ill) show a behavior typical
of a system with multiple potential-energy minima. Fig-
ure 1 shows histograms of the occupancy of the
dihedral angles during the last 216 ps of the simulation.
The y angles corresponding to the amino acids 2 and 3

and 33 to 35, which form P-strand [20] conformations,
and amino acids 19 to 21 and 40 to 43, which form parts
of turns [20], show bimodal distributions. The a-helical
regions of the protein, amino acids 7 to 18 and 23 to 30,
show sharp unimodal distributions. The p dihedral an-

gles, not shown, exhibit similar multimodal distributions.

FIG. l. Histograms of the fraction of occurrences of the
backbone dihedral angles y, in degrees, of crambin during the
last 216 ps of simulation. The amino acids are labeled by num-

ber.
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FIG. 2. Dihedral angles p and y (in degrees) as a function of
time (in ps) for the amino acids Pro(19), Gly(20), and Thr(21).

Figures 2(a)-2(e) show the time dependence of the (p, yr)

angles near the residues Pro(19) to Thr(21) that form a
turn, and sample bimodal distributions. These variables
show characteristics typical of nonlinear systems [4,5].
That is, there are many fast flips from one conformation
to another, with rapid underdamped oscillations between.
Equal-time transitions in yi9 and &M, shown in Figs. 2(b)
and 2(c), are anticorrelated; i.e., when yi9 changes
abruptly from one conformation to another, &2o also
changes abruptly in the opposite sense. The ring nature
of the proline residue Pro(19) does not allow Pi9, Fig.
2(a), to change from gauche to gauche+ or trans [20],
but two separate values of pi9 are sampled around
gauche . Notice that the pairs of angles (tlii9, IJ'li9),

(pic, tli2o), and (iii2o, tli2i) are anticorrelated, but (&20 +20)
are not anticorrelated over the whole trajectory. These
motions have the overall effect of changing the turn con-
formation. At this point we prefer to analyze the protein
motions in terms of nonstructural variables that can de-
scribe collective, large-amplitude motions.

Delocalized nonlinear motions. —In addition to local-
ized, anticorrelated large motions we analyzed the simu-
lations for extended large-amplitude motions. To do so
we first employed the N-particle root mean square (rm-s)-
distance [21] d(t, t*) between evolving protein configura-
tions; if this rms distance per particle is large it implies
substantial overall motion. The distance d(t, t ) between
pairs of conformations at t, t *, respectively, sampled
every 0.5 ps, is displayed by color coding in Fig. 3. Note

' 0 ' ll' 'll II Iii [1 ' I I [I I[ » II [, 0 ti' I e y I
i l, hat

FIG. 3. Contour of the root-mean-square distance between

pairs of conformations adopted by the protein every 0.5 ps along

the last 216 ps of the molecular-dynamics trajectory. The con-

tours are colored according to the distance between two struc-
tures sampled at times t and t* (in ps) [cyan, 0.25 A &d
~ 0.75 A; green, 0.75 A & d ~ 1.25 A; blue, 1.25 A & d ~ 1.75

A; magenta, 1.75 A &d~ 2.25 A; and red, d) 2.25 Al. The
largest rms distance between two configurations is 2.38 A.

first that the distance (magenta, 1.75 A &1~ 2.25 A)
between the initial conformation and those after 40.0 ps
is quite large, indicating a substantial overall motion
away from it. Proceeding further in time we see a repeat-
ed pattern of flipping between green (0.75 A & d ~ 1.25
A) and blue (1.25 A & d ~ 1.75 A) approximately every
60 ps. This period is much larger than any calculated by
normal-mode analysis [7,14], as well as larger than the
average time between localized dihedral transitions dis-
cussed above. These features indicate extended collective
nonlinear motions. It is desirable to find a representation
of the collective modes in terms of a set of directions,
m, which most efficiently describe the atomic fluctua-
tions of the specific protein under study. The directions
m are determined by using the following ansatz: Mini-
mize the mean-square distances of the [r;] configura-
tions normal to m, such that most of the fluctuations
will then be along m . Introducing a Lagrange multi-
plier A, , such that a constraint m .m =1 is satisfied,
we minimize the functional

L

f(m, yo, k) =—g [(r; —yo)' —[(r; —yii) m]']

+)I.[m. m —1],
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with respect to (m, yn, l(,). This is equivalent to a general-
ized least-squares fitting [22] in which a line passing
through yo, with directional cosines m„is the best ap-
proximation of all sampled conformations by a line in

3N-dimensional space. f(yt), [m„a= I, . . . , 3N], )i, ) ~ 0
gives a measure of the reliability of the fitting.

Minimizing with respect to yt), i.e., Vynf =0, yields
ye=(1/L)P;-~r;, which equals the geometric center of
all the sampled conformations, and is the best approxima-
tion of all sampled conformations by a point [22].
Minimizing with respect to )i. yields m m-1. Minimiz-
ing with respect to the set of [m, /, a= 1, . . . , 3N, yields
the matrix eigenvalues equation

(2)

where

();„(i ~„~~(d)

1() ' ~/

;)0 100 1:)0 00

(3)

Equation (2) has eigenvalues A. „and eigenvectors m„,
v = I, . . . , 3N, corresponding to the various eigendirec-
tions which characterize the motions seen in the simula-
tion. Using m„as a basis it is straightforward to show

that the vth eigendirection has mean-square fluctuations
normal to it given by

(d (m„)) f(m„,yt), k„)=Tr(cr) —k, . (4)

That is, the eigendirection with largest )i,„bestrepresents
the predominant motion of the protein. Eigenvectors and
eigenvalues can be computed from the simulation data.
Having done so the projection of the motion r' (t) along
a given eigendirection m„,p„(t)=r(t) m„,yields a pic-
ture of the motion in a set of generalized natural coordi-
nates for the particular protein. There is no assumption
that this decomposition is harmonic or quasiharmonic.
Indeed, Figs. 4(a)-4(e) show the projections for the first
five directions (left) and the histograms (right) of the oc-
currence of all the values of p(t) for the same vectors.
The histograms of the population distributions of p(t)
can be fitted by multicentered distributions with two or
three clearly distinguishable centers. The projection cor-
responding to the largest eigenvalue, Xi =131.2 A, Fig.
4(a), shows a bimodal distribution. The distribution cen-
tered at p~(t) =20.0 A is only sampled during the first

40 ps of the dynamic trajectory. A transition from that
minimum to the distribution centered at = —7.0 A

occurs during the next 20 ps. Similar behavior was

shown in Fig. 3. This bimodal distribution could be inter-
preted as either a nonlinear transition from one confor-
mation to another or, since we observed only one transi-
tion, a transient in the dynamics from a metastable high-

energy initial conformation to a lower-energy conforma-
tion. Given the length of our simulation we cannot distin-

guish one case from the other, but it would be proper to
say that it is due to a metastable initial conformation.

The distribution corresponding to the second largest ei-

FIG. 4. Projections p„(t)of the protein trajectory along the
five largest eigenvalue vectors of Eq. (4) are shown in left-hand
plots. The right-hand-side plots show histograrns of the popula-
tions of occurrence of all the values of p(t) for the correspond-
ing vectors. The solid line shows a fitting of the distributions by
sums of two [(a) and (c)] or three [(b),(d), and (e)] Gaussians.
The dashed line shows the distributions calculated from the
simulation. p„(t)is given in A, and t in ps.

genvalue, )(,2 44.4 A, is shown in Fig. 4(b). This distri-
bution has three centers with maxima at —7, 1, and 10
A. The time history of the projection of the trajectories
along this eigenvector shows frequent transitions from
one center to another at time intervals larger than 60 ps.
Transitions to each center occur at least twice, and,
therefore, the motions along this direction describe equi-
libriurn transitions from one protein conformation to
another. Similar curves are shown for the third
(A 3 37.9 A ), fourth (A,4

= I 7.0 A ), and fifth (Xs I 6.7
A ) eigenvalues. The distributions for vectors six and
seven (k6 10.7 A, )i,7 8.9 A ), not shown, exhibit mul-
ticentered distributions, but the maxima of the distribu-
tions are very close to one another and cannot be clearly
distinguished. We do not observe markedly multicen-
tered distributions for vectors with eigenvalues smaller
than A, 7, indicating unimodal, though possibly quasihar-
monic, motions.

It should be added that the mean-square displacements
of atoms around their average positions are described by
(u ) =(I/N)tr(o) =(I/N)g„-~k„. In this calculation,
the trace of o is 386.0 A, which gives a value for (u ) of
0.946 A . Note that the first configurational eigenvector
contributes 34% of the total (u ). The first five directions
contribute 64% of (u ), while the remaining directions,
which show unimodal displacements, contribute 36%.
That is, (u ) has contributions from markedly nonhar-
monic motions. Therefore, the comparison of (u ) to the
Debye-Wailer factors, which is equivalent to assuming a
Gaussian distribution of the fluctuations around one con-
formation, is not correct [5].
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From the results presented here we can conclude that
nonlinear motions describing oscillations around multi-
centered distributions are responsible for most of the
atomic fluctuations in proteins. These atomic fluctuations
may be used by proteins during catalysis and, indeed, bio-
logical evolution may have optimized and exploited the
role of what has been called the time dimension of protein
structure [6].
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