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Nonlinear Susceptibility as a Probe of Tensor Spin Order in URu2Siz
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The nonlinear susceptibility is discussed as a probe of multispin correlation functions. In the heavy-
fermion compound URu2Si2, measurements of the leading nonlinear susceptibility (Z3) reveal a sharp
anomaly at 17.3 K closely matching that of the specific heat at the same temperature. We attribute this
result to the development of anisotropic triplet pairing in the particle-hole channel of the heavy electron
fluid.
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Heavy-fermion compounds have attracted much in-
terest as candidates for unconventional electron pairing
[1]. These systems exhibit marked low-energy antiferro-
magnetic spin fluctuations often accompanied by a very
small staggered magnetization [2,3]. URuzSi2 is a partic-
ularly dramatic example; here specific-heat and suscepti-
bility anomalies [4-6] indicate a magnetic transition at
17.3 K despite a tiny observed moment (p0-0.04pg)
that cannot account for the entropy loss at this tempera-
ture [2]. In this Letter we present nonlinear susceptibili-
ty measurements on URu2Si2 that probe tensor spin or-
der; they suggest that an itinerant quadrupolar order pa-
rameter drives this mysterious transition.

The nonlinear susceptibility was first introduced as a
direct probe of Edwards-Anderson order-parameter fluc-
tuations in spin glasses [7]. In nonrandom systems this
method can be generalized to multipolar moment fluctua-
tions; to date, it has been predominantly used as a probe
of quadrupolar interactions in rare-earth compounds [8].
These studies focused on the paramagnetic phase, with

the aim of probing the uncorrelated multispin fluctuation
spectrum. By contrast, here we examine the phase transi-
tion behavior of the nonlinear susceptibility in a manifest-

ly itinerant magnet. In general terms, the magnetization
in the direction of the applied field in the paramagnetic
state is

1 3 1M=g1H+ g3H + =g — g2 —iH" (1)3!,-( (2n —1)!
where g2„-~ is proportional to the 2nth irreducible (I)
moment of the magnetization

(2)

and T is the temperature. The development of uniform
spin order involving the n-spin (irreducible) order param-
eter

q„=&Q„)=— d l. . . dn&S(l )S(2) . . S(n)) (3)1

(S is the spin component in the direction of the applied

field) is signaled by a positive divergence in the corre-
sponding nonlinear susceptibility

(4)

in the absence of singularities in lower-order terms.
The leading nonlinear contribution in the magnetiza-

tion expansion, g3, is of particular interest. In a collinear
antiferromagnet, g3 passes through zero near TN.. g3 & 0
for T& Tq reflecting the negative curvature of the Bril-
louin function in finite field, whereas g3&0 for T & T/v

due to the presence of quadrupolar fluctuations induced
by a finite magnetization. Alternatively, the development
of quadrupolar spin order is signalled by a positive diver-
gence in g3, analogous to the behavior of g~ in the dipolar
case. We note that this discussion can be easily extended
to spins with continuous symmetry where a positive diver-
gence in g3 would signal the development of tensor
magnetism [9-11].

The heavy-fermion compound URuzSi2 is a strong can-
didate for exotic spin ordering [12]. Here specific-heat,
susceptibility, and resistivity anomalies [4-6] at 17.3 K
are accompanied by a gap in the magnetic excitation
spectrum [13], suggestive of a spin-density-wave transi-
tion. However, the observed moment below this tempera-
ture, @0=0.04pg [2], cannot account for the large entro-

py reduction at the transition. Specifically, the moment
loss parameter m(po/p, rr) /[y(Ty) —y(0)/y(T~)] is the
ratio of the mean-square Auctuating moment (normalized
to the high-temperature value p,s) to the fraction of the
Fermi surface participating in the gap [y=C(T)/T]; for
complete dipole formation m =1, but for URu2Si2
m —10, suggesting the possibility of higher-order mul-
tipolar order [2].

For the present measurement of g3 in URu2Si2, we
used high-quality single crystals described elsewhere [14].
I n particular, these crystals sho~ed no sign of fer-
romagnetism at 35 K, indicative of stacking fault defects.
Measurements of M vs H up to 5 T were made with a
commercial magnetometer. g3 was determined by fitting
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FIG. I. The leading nonlinear term, 7r3H3/3!, in the magneti-

zation of URu2Si2, for H parallel to the tetragonal e axis, at
three diA'erent temperatures spanning the transition at 17.3 K.

the data by Eq. (1), truncated at the cubic term. The de-
viation from linearity was small so higher-order terms
could not be determined reliably. Figure 1 shows raw
data (with the linear term subtracted) at different tem-
peratures, indicating a strong temperature dependence of
g3 in the vicinity of T, =17 K. The linear susceptibility

g~ obtained from the fits is displayed in the lower frame
of Fig. 2, and there is good agreement with previously re-
ported data [4-6] at T,. In contrast with the g~ results,

g3 shown in the upper half of Fig. 2, exhibits a strong
anomaly with the shape evocative of y=C(T)/T. Also
note the temperature independence of g5 above T, (Fig.
2). This feature cannot be explained using local moments
at finite temperatures, but instead suggests a quadrupolar
analog of the Pauli susceptibility. Finally, the anisotropy
of g5 refiects the Ising nature of spins, displayed already
in g~.

In order to determine the possible generality of this
effect to other heavy-fermion systems, we performed
the same study on two other materials, U2ZnI7 and
Up 95Thp p5Pt5. U2Zn [ 7 was one of the first heavy-fermion
compounds found to possess magnetic order, with a col-
linear antiferromagnetically ordered state with spins in
the basal plane of the rhombohedral lattice [15]. Its or-
dered moment is pp=(0. 8~0.1)pa per uranium atom,
which is smaller than the free U moment of p,g =2.25pg,
nevertheless, m =0.6 [15]. In UQ95Thpp5Pt5, a spin-
density-wave transition at 6 K was found to replace part
of the superconducting Fermi-surface instability observed
in the pure material. Its order is also collinear with spins
lying in the hexagonal basal plane [16]. In Up 95-

ThQQ5Pt3, pp =(0.65 ~ 0.1)ps, but like U2Zn~7, the
change in y is correspondingly small [17];m =0.5, as ex-
pected for Fermi-surface instabilities to ground states
with dipolelike ordered moments.

The samples used in the present study are from the
same batches as described elsewhere [15,16]. In Figs. 3
and 4, g3 for these two materials is shown. Unlike g3 in

URuqSi2, g3 for these compounds is well behaved; it fol-
lows the expected response for a normal antiferromagnet,
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FIG. 2. Nonlinear susceptibility g3 and linear susceptibility

g& for URu2Si2. The response is shown for both the easy mag-
netic direction, parallel to the tetragonal c axis (solid symbols),
and in the hard direction perpendicular to the c axis (open sym-

bols). The peak in g3 at the same temperature where the

specific heat peaks illustrates the predominance of high-order

spin correlations for establishing magnetic order.
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FIG. 3. Nonlinear susceptibility g3 and linear susceptibility

g/ for U2Zn~7. The response is shown for both the easy magnet-
ic direction perpendicular to the rhombohedral e axis {solid
symbols) and in the hard direction parallel to the c axis (open
symbols). The vanishing of g3 near Tv is the expected behavior
for a conventiona) antiferromagnet.
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FIG. 4. Nonlinear susceptibility g3 and linear susceptibility

g~ for Up. 95Thp.p5Pt3. The response is shown for both the easy
magnetic direction, perpendicular to the hexagonal c axis (solid

symbols) and in the hard direction, parallel to the c axis (open
symbols). The vanishing of g3 near Tz is the expected behavior

for a conventional antiferromagnet.

passing through zero at T~. We conclude, therefore, that
the sharp anomaly in URu2Si~ is a result of the mis-

match, as measured by m, between the ordered moment
as observed by neutrons and the entropy loss at the tran-
sition.

We now turn to the interpretation of these results.
Within a simple Landau-Ginzburg theory, a finite

hg3(TN) is generated by a coupling F, = —
—,
'

rip B
where y and B are the order parameter and the magnetic
field, respectively; this additional term implies the devel-

opment of a quadrupolar moment Qz = —r) F/
8B =rip . Thus, a finite hg3 could occur at a conven-
tional spin-density-wave transition; in this case (ri-po)
the Landau-Ginzburg theory predicts (hc/Tlv)(Tlvhg3)
=3(pj). The observed specific heat and nonlinear sus-

ceptibilities anomalies are clearly ineonststent with the
tiny observed moment [2] (pp —0.04pa), and the data
demand a new order parameter. Since the nonlinear sus-

ceptibility in the z direction scales with y=C(T)/T, we

conclude that the autocorrelation function for the energy
fluctuations near the transition at T=17.3 K is directly
proportional to the fluctuations in the second moment of
the magnetization:

y =&~E'&/T', g, =&(aQ, )'&/T',

y —~,-&bE' &-&(~Q,)'&. (s)

In other words, the dominant energy component responsi-

ble for the sharp specific-heat anomaly

2682

&yt(x) o'y(x') &
=f(x,x'), (7)

where f(x,x') is a spin-pairing wave function, closely
analogous to that of anisotropic superconductors. In

URu2Si2 it appears that the s-wave component of f,
which determines the local vector magnetic order, is

effectively absent. The nonlocal coupling (6) favors an-
isotropic pairing, possibly a staggered wave function of
the form

f(x,x') =g (x —x') cosG (x+x')/2,

where G =(0,0,x); staggered order results in a gap in the
excitation spectrum, accounting for the exponential be-
havior of the low-temperature specific heat [4], the loss of
Fermi-surface density of states [13], and the large
Fermi-surface reorganization suggested by the large in-
crease in Hall constant below the transition [18]. The
fundamental order parameter f(x,x') breaks time-re-
versal symmetry, unlike the case at a conventional quad-
rupolar transition. This allows it to couple linearly to the
staggered magnetic order ELa = —g(mf), resulting in a
small induced moment m ~ (rif) —(T, —T) 'i within
mean-field theory. This order parameter will generate a
quadrupolar moment Q2CX: )f(x,x')) —T, —T. We ex-
pect several physical variables to couple to Q2, the mag-
netoresistance, the elastic constants, and the anisotropic
magnetostriction should all display anomalies that in-
crease linearly with decreasing temperature, consistent
with experimental observation [19-21].

In principle, one could consider more complex multi-
spin order parameters as driving the T=17.3 K transi-
tion in URu2Si2 [12]; however, their associated correla-
tion functions would not yield the observed signal in

g3. In particular, the three-spin order parameter
&S(1)S(2)s(3)&Iproposed by Gorkov [12] yields a lead-
ing singularity in g5„with small secondary effects in g[
and g3 comparable in magnitude to the observed vector
moment (pp 0.04pa) [2]. Similarly the formation of
isotropic singlets [22], a proposed explanation for the spin
ordering, cannot easily account for the observed diver-

gence in g3. The development of staggered quadrupolar
order is the most likely scenario; this permits the develop-
ment of a perfect gap among the pairing electrons, con-
sistent with the exponential form of the specific heat
below 17.3 K [23].

H-g J~Q~,

Q;, =&s;s &, =s;s; —&s;&&s;&,

is the irreducible (quadrupolar) part of the standard Is-
ing coupling.

The sharp mean-field specific-heat anomaly at the
spin-ordering transition in URu2Si2 suggests that it in-
volves a large number of electrons within the relevant
coherence length (i.e., n/g )) I). This transition is prob-
ably dominated by itinerant spin ordering in the heavy-
fermion band of form
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In conclusion, we have presented the nonlinear suscep-
tibility as a probe for examining multispin correlations.
Measurements on the heavy-fermion metal URu~Si2 indi-
cate an anomalous g3 at T=17.3 K that tracks with the
mean-field specific-heat structure at this transition. Fur-
ther measurements on this compound, including finite-
field g3 and tunneling studies, would confirm the nature
of this ordering. Multipolar order has been proposed for
a number of rare-earth pnictides that display coupled
magnetic and structural transitions [24,25]; the nonlinear
susceptibility, measured in the ordered phases, would be
an ideal means of confirming these suggestions. Similar-
ly, anomalies in the low-temperature specific heat, sus-
ceptibility, and resistivity of the actinide compound UPd3
[26] have been attributed to quadrupolar interactions;
similar studies as presented here should be performed on
this system. Finally muon-spin-resonance and specific-
heat measurements indicate a moment loss value m
~10 for U~ „Th„Be~3 at a transition below the
normal-superconducting one [27]; as in URu2Si2 the
enigmatic nature of the superconducting phase may be
determined by its coexistence with exotic spin order.
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