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Hubbard and Anderson Models on Perovskitelike Lattices: Exactly Solvable Cases
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Exact solutions of the Hubbard model and the periodic Anderson model in the limit of infinite interac-
tion strength are presented. Both models are studied on a D-dimensional decorated hypercubic lattice
with periodic boundary conditions for any dimension D ~ 2 and arbitrary size. The lattice is very similar
to the perovskite lattice. In addition to the ground-state energy, a corresponding eigenstate is construct-
ed. This ground state contains at least two particles per unit cell. For the Anderson model, the exact
solution is restricted to a surface in the (Ef, V) parameter space; however, the resulting relation V(EI)
does not lead to unphysical parameters.

PACS numbers: 71.10.+x, 71.28.+d, 74.70.Vy

Strongly interacting many-particle systems are a classi-
cal problem in solid-state physics. Numerous experi-
ments indicate the breakdown of one-particle pictures;
however, the theoretical description of truly interacting
systems is far from being satisfactory. Highly correlated
Fermi systems are frequently modeled by the familiar
Hubbard and Anderson Hamilton operators [1]. These
models describe the interplay between properties of
itinerant and strongly interacting electrons; however, they
only contain the absolute minimum of "ingredients" in

order to remain tractable. Unfortunately, these models
are still very complicated and exact results [2] are rare.
In the light of this situation, it is highly valuable to obtain
additional exact results as constraints for approximation
schemes.

The model Hamiltonians and a particular D-dimen-
sional lattice are defined. For these systems, the ground-
state energy and a corresponding eigenstate are calculat-
ed analytically in the limit of infinite interaction strength
(U ~) for any dimension D ~ 2. In a first step, the
model Hamiltonians are rewritten in terms of suitable
operators. This operator transformation is surprisingly
simple, and the eigenstate which is an exact ground state
follows immediately. In order to discuss the nature of the
ground state in the final part of this Letter, the one-
particle spectra of the models are briefly mentioned.

The lattice. —The exact solution of the Hubbard and
Anderson models is an unsolved problem; however, a par-
ticular lattice where a solution is obtained may be derived
from a D-dimensional decorated cubic lattice: The cubic
lattice vectors are denoted by R, and the D basis vectors
by e,. The electronic orbitals are located at the "decorat-
ed" sites r =R+ 2 e„ i.e., at the centers of the cubic
bonds. The unit cell of this lattice Vl(R) contains D sites.
For the sake of brevity, the set of all 2D sites r =R +

2 e,
surrounding a lattice point R is called A(R). Figure 1 il-

lustrates this lattice for D=2. The cubic lattice points
are represented by open circles, and the particle sites by
solid circles, respectively.

For D=3 the sites JV(R) form octahedra. The struc-
ture of such a lattice is similar to the Re03 structure. (It
is possible to consider the number of unit cells in one of

the three dimensions to be 1, a lattice realized in the Cu-
0 planes including the apex oxygen atoms in high-T, ma-
terials. )

Hopping. —Hopping is allowed between nearest-neigh-
bor sites (along the edges) and those next-nearest-
neighbor sites that are connected across the center of a
D-dimensional octahedron. The approach introduced
here requires that both types of hopping have the same
matrix element —t (with positive t). Figure 1 illustrates
the hopping by solid lines, connecting solid circles.
Periodic boundary conditions are assumed. The kinetic
energy term of the model Hamiltonians (for spin tr) then
reads

where the operators c„t (c„)create (annihilate) parti-
cles at the site r with spin a. They obey Fermi statistics.

Hubbard model. —The Hubbard model is studied in

the limit of infinite interaction strength. This simply ex-
cludes double occupancy of orbitals at the same lattice
site, i.e., the interaction reduces the Hilbert space of the
Hamilton operator to those states where the occupation
number at any site r does not exceed 1. The operator
PH =+„(I—c„ lc, lc, lc, 1) projects onto this subspace.

FIG. 1. Two-dimensional illustration of the lattice. The hop-

ping matrix elements t are indicated by solid lines connecting
solid circles.
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The Hubbard Hamiltonian HH for the case considered
here is most conveniently written as

the pseudodiagonal representation,

Htt = 4—tPtt(DN —N, )Pn+R, (s)
HH Ptt gT~ PH. (2)

Note that this model contains just the parameter t, which
defines the energy scale only.

Anderson model. —The Anderson model describes the
interplay between electrons in extended orbitals (itinerant
electrons), where the Coulomb interaction plays a minor
role, and electrons in localized states, where the Coulomb
interaction is the dominant influence on the electronic be-
havior. The Anderson model studied here is defined on
the lattice described above. The itinerant electrons are
described by the hopping Hamiltonian Eq. (1). The lo-
calized orbitals are placed at the cubic lattice points R
(at the center of the hyperoctahedra). They have an on-
site energy

Hf ~ Efgftt J'tt ~,
R

(3)

and the effect of hybridization between the itinerant and
localized particles is incorporated by the usual hybridiza-
tion term

H,f Vg g (ftt c, +H.c ). .
R r 6 JV'(R)

(4)

The interaction in this model affects the localized orbitals
only and is described analogously by a projection opera-
tor Pq excluding f-orbital double occupancy. The Ham-
iltonian H~,

Hg(EI, V) Pgg(T~+Hf ~+Hpf ~)Pg, (5)

is solved below. Only the parameters Ef and V are
chosen as independent parameters, t is considered to
define the energy scale.

Solution of the Hubbard model The Hu. —bbard model
as defined above can be solved by means of a rather sim-
ple operator transformation. This transformation is
based on the linear combination

which generates a uniform distribution of electrons in the
neighborhood Af(R) of the lattice point R. Note that
these new operators do not fully obey Fermi commutation
rules:

1, if R=R',
[hatt ~itin, ~1+=6 "(2D) ', if R,R'nn,

0, otherwise.

(7)

Nevertheless they are useful, because the expression
Pnytt yn contains the kinetic energy operator (1) and
the particle number operator. By using the identity
[C, , PH) — c„—c, — c„PH the Hubbard Hamiltonian
Eq. (2) may be written in terms of these new operators in

where the operator N, =g„, c,t c, denotes the particle
number and R is defined as

R =2Dtg pter PHyg
R, cr

If Ig& denotes the vacuum state, the state Iy) contains
two particles per unit cell. The norm of I'D) does not
vanish if one of the D system lengths equals an odd num-
ber of unit cells. The projected state Iy) does not van-

ish, because its scalar product with a trial state
IQ) gite fc '

1 Ig) is nonzero, if two of the D system
lengths are odd. [The sites r and r' are located at bonds
in the directions e„&e„within the same unit cell R(R).
The restriction on the system lengths results from our
choice of the trial state. It is not necessary; however, it is
sufficient. ]

Because of the operator identity Pttiirtt ~PHytt =0 thet

only nontrivial term in the eigenvalue equation, RIy),
vanishes. Consequently, the state Iy) is an eigenstate of
HH and the inequality

Cn ~ (yIHttIy) = —4t(DN N,)—(12)

holds. The upper bound on the ground-state energy Eq.
(12) and the lower bound Eq. (10) coincide.

The method presented here requires particle numbers
larger than 2N. The Hubbard system under considera-
tion contains DN sites. Consequently, the two-dimen-
sional case represents a half-filled system, and nontrivial
results are only obtained for D ~ 3.

The inequalities (10) and (12) remain valid if the state
Ig) contains additional particles. It is possible to con-
struct such states explicitly and it may be shown that
their norm does not vanish. The discussion of this gen-

It is emphasized that the representation (8) of HH is an

operator identity; no approximations are applied. The
essential advantage of this representation is the following:
The Hamiltonian HH is written in terms of a c number
( —4DtN), an operator that commutes with the Hamil-
tonian ( 4tN—,), and a positive semidefinite remainder,
the operator R. It follows immediately that the ground-
state energy CH for this system may be estimated from
below by

(10)

N, is the eigenvalue of the particle number operator N, .
This inequality is valid for any particle number N„di-
mension D, and number of unit cells N.

In the following, an eigenstate of Htt is derived and it
will be shown that inequality (10) is fulfilled as an equali-
ty: Consider the projected state
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eralization will be published else~here.
Solution of the Anderson model .—The periodic Anderson model as introduced above may be treated in a completely

analogous manner. The generalized operators

rytt -a (2D) g c„+PfR (»)
r e N(R)

(with i a[ +

ipse

1) allow us to obtain the following identity:

2DtA, g H
J'2D t gHf e .. Hcf e P

Ff a r a

2Dt t 4DtNg ytt, ~Pgytt ~ Pg —
2

—2t N, +(2—X)D ~ Nf &Pg. (14)
a R,o a a

In contrast to the Hubbard case, an immediate identi-
fication of the Anderson Hamilton operator in the expres-
sion above is not possible, unless the coefficients of Hf
and H,f [3] on the left-hand side of Eq. (14) become
identical to —l. Further, it is necessary that the com-
bination of occupation-number operators on the right-
hand side of Eq. (14) add up to the conserved quantity
N, +Nf. The conditions result in a restriction of the pa-
rameter space, because the number of equations exceeds
the number of freely adjustable parameters. The solution
of the resulting simple system of equations requires that
V and Ef obey

V~ t2 ——' tF2 f ~ (is)

and, as a consequence, Ef must be smaller than 2t The.
ground-state energy 8q of the Hamiltonian Eq. (5) is ob-
tained by the same arguments as presented for the Hub-
bard case:

e(k) -2t [1 —e,b(k)], (is)

where «b(k): D+ g„cos(k„). The D 1 remaining—

2tN, 4DtN/a—
I /a 1+(2t —Ef)/4Dt,

where N, denotes the total electron number. Similar to
the above discussion, N, ) 2N must be fulfilled, other-
wise Eq. (16) just becomes a lower bound on the ground-
state energy. In contrast to the Hubbard model, the case
D 2 for the periodic Anderson model does not represent
half filling.

It would be desirable to avoid the restriction of the

(Ef, V) parameter space. However, this surface Eq. ( I 5)
is at least partially located in a regime of phenomenologi-
cally relevant parameters. (The resulting magnitude of
the hybridization V may be somewhat large. )

One particle prope-rties Before the .—results of the pre-
vious section are further analyzed, the properties of the
noninteracting system are briefly introduced. The band
structure and the corresponding Bloch states allow at
least some analysis of the eigenstates calculated above.
Spin indices are omitted where not needed.

Hubbard case.—The band structure of the hopping
system consists of one dispersive shifted tight-binding
band

+ [[-,' Ef —t+t«, (k)]'+2v'«b(k)] '". (i9)

This band structure exhibits the familiar hybridization

gap for nonvanishing V. The remaining D —
1 solutions

are degenerate peaks at e =2t. For the special case

V =2t —tEf ~ (20)

the expression Eq. (19) for the two extended bands
simplifies. One sign of the square root yields e (k)
=Ef —2tetb, and the other adds an additional peak at
e 2t. Note that relation (20) is not identical to Eq.
(15), the surface on which the exact solution is obtained.
This point will be further discussed below.

Discussion. —The understanding of a true ground state
of an interacting system is a very important task. Most
of the common approximation schemes are based on a
"one-particle language,

" and it is very instructive to
evaluate these in the light of exactly solvable, nontrivial
models.

The occupation of the lowest dispersive band [4] with

spin cr in the Hubbard model is gt, (yrickt~et, ~i )/tie(yiy)
=N N, /D. (N, —denotes—the number of electrons
with spin o.) This result can be hardly understood by
one-particle pictures.

Only a few statements about the degeneracy of the
eigenstates can be made. The authors assume that for
the case N„=2N (N, denotes the total particle number)
the ground state of the Hubbard model Eq. (11) (D) 3)
is not degenerate; unfortunately, this has not been proven.
However, it can be shown that degeneracy is present for

N, ) 2N. When )g) is the vacuum, the ground state iy)
is a spin singlet.

The ground state of the interacting systems is con-
structed by projection of Slater determinants iso) [5].
[Note that qadi is defined by Eq. (6) for the Hubbard
case and Eq. (13) for the Anderson model, respectively. ]

"bands" form degenerate k-independent atomic states lo-
cated at the upper band edge with energy e=2t.

Anderson case.—The one-particle spectrum of the An-
derson model is slightly more complicated, because there
is one more degree of freedom present. The lowest ener-
gies form two bands with dispersion relations

e~ (k) = —,
' Ef+t —te,b(k)
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A Slater determinant is always an eigenstate of a nonin-

teracting Hamiltonian and it is instructive to discuss cor-
responding noninteracting versions Htt and H~(Ef', V').
It is convenient for that purpose to rewrite the nonin-
teracting Hamiltonians in terms of the "pseudo" Fermi
operators yR . The simple hopping Hamiltonian then
reads

tion has been proven by Brandt [IO]; however, it can be
shown that for the class of lattices considered here
(D ~ 2) no phase separation takes place.

This research was supported in part by the Deutsche
Forschungsgemeinsch aft (DFG), research project Br
434/6- I. The authors gratefully acknowledge many help-
ful discussions with J. Stolze.

Htot = —2t(2DN —N, )+Rp, (21)

with Rp 2Dtgg ttrtt. ttrtt being positive semidefinite.

By arguments used above it follows that )Ittp& is the
ground state of the noninteracting system [6].

The more complicated Anderson version does not ex-
hibit this property. The analogous representation of the
noninteracting Anderson model,

Hg (Ef', V') 2t Nr + —Rp, (22)0, 2DN 1

a a

can only be obtained for the parameters E =2t —2Dtp /
a and V' 2Dt p /a, where a and p are taken from
the rigorous solution (17). They specify the Slater deter-
minant. Writing the parameter sets Ef, V and Ef', V' as a
function of the parameter p/a allows two conclusions:
(I) The parameter V' is identical to V, whereas E is "re-
normalized" to a larger value, E —,

' Ef+2t. As a
consequence, the Slater determinant which solves the in-
teracting system (after projection) is the ground state of
a diferent noninteracting system. This fact has been
seen previously [7]; however, not by rigorous methods.
(2) The parameters Ef', V of this system are located on
the surface defined by Eq. (20), the relation that
simplifies the one-particle spectrum to a single lower
band and D b' peaks.

The chemical potential at zero temperature is by
definition the energy of an additional particle added to
the system. For the Hubbard model, the chemical poten-
tial is constant p 4t; for the Anderson model it is p =2t
if the particle number exceeds 2N.

This paper discusses two models for highly correlated
Fermi systems; however, many more variations including
disordered systems may be studied by the method
presented here. One additional model of interest is, e.g.,
the spinless Falicov-Kimball model [8]. Freericks and
Falicov [9] proposed that the phase-separated state is the
ground state of the one-dimensional case. This proposi-
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