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An Obstacle to Building a Time Machine
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Gott has shown that a spacetime with two infinite parallel cosmic strings passing each other with

sufficient velocity contains closed timelike curves. We discuss an attempt to build such a time machine.
Using the energy-momentum conservation laws in the equivalent (2+1)-dimensional theory, we explicit-

ly construct the spacetime representing the decay of one gravitating particle into two. We find that
there is never enough mass in an open universe to build the time machine from the products of decays
of stationary particles. More generally, the Gott time machine cannot exist in any open (2+1)-
dimensional universe for which the total momentum is timelike.

PACS numbers: 04.20.Jb, 04.20.Cv, 04.20.Me, 98.80.Cq

It has long been known that general relativity allows
the existence of closed timelike curves (CTC's) [I].
Since CTC's allow travel backwards in time, with atten-
dant paradoxes, it is tempting to believe that they cannot
arise in the real Universe [2]. Within the context of clas-
sical general relativity, one might therefore hope that the
evolution of CTC's can be prevented by stipulating some
reasonable constraints on the initial conditions.

Recently Gott [3] has shown that if two infinitely long
straight cosmic strings pass each other with sufficient ve-

locity, the resulting spacetime contains CTC's. This solu-
tion is particularly interesting because it requires no non-
trivial spacetime topology, does not violate the weak ener-

gy condition, has no singularities or event horizons, and
contains [4] complete spacelike hypersurfaces prior to
which no CTC's exist. In this paper we explore the initial
conditions under which Gott time machines can arise.

A spacetime populated solely by infinitely long parallel
cosmic strings may be described by (2+1)-dimensional
general relativity with point masses. Previous studies of
(2+ 1)-dimensional gravity [5] have shown that the
metric describing empty regions of space is necessarily
flat. The external metric of a single particle with mass
parameter p is of the conical form: ds = —dt +dr
+r dB, with B in the range 0& B&2z—a, where the
deficit angle a=8trGlt (G is Newton's constant). The
spacetime can be constructed from Minkowski space by
removing a pie slice of angle a and identifying the two
sides of the slice.

Solutions with several moving particles may be con-
structed by joining boosted single-particle solutions.
Such systems possess a conserved energy-momentum
vector P" [6]. For Gott's spacetime we find that P" is

tachyonic (i.e., spacelike); it is impossible to boost to a
Lorentz frame in which the center of mass is at rest. This
is equivalent to a previous result of Deser, Jackiw, and
't Hooft [7].

We use the laws of energy-momentum conservation to
discuss nongeodesic motion, explicitly constructing the
spacetime for one gravitating particle decaying into two.
We then discuss an attempt to build a time machine from

the decay of two stationary particles; the total deficit an-

gle is found to exceed 2x, so the construction is impossi-
ble in an open universe. We state a more general con-
clusion about obstacles to time machine construction,
which we will prove in a longer paper to follow.

Conservation laws in (2+1) dimensi-onal gravity.—In (2+1)-dimensional gravity with point masses,
spacetime curvature is concentrated at the conical singu-

larities of the particles. The curvature at these singulari-
ties can be probed by parallel transport of a vector
through the spacetime —the flatness of the external space
ensures that the result will be a topological invariant, de-

pending only on the singularities encircled. For a station-

ary particle A with deficit angle az, the result of parallel
transport of a vector counterclockwise is to transform it

by a counterclockwise rotation matrix R(a~). Parallel
transport around a moving particle results in a transfor-
mation [6]

Tq =B~R(ag)B~ ',

where Bq is the Lorentz boost matrix that brings the rest
vector to the velocity of particle A. A loop around several

particles can be deformed to a sequence of loops that
each encircle one particle; the resultant transformation is

obtained by multiplication of the appropriate one-particle
matrices: T&,&

=Ttv TIv i Ti. (Note that this defini-

tion requires a consistent ordering of the particles and a
consistent definition of the coordinate systems in which

the velocities of the particles are measured. This has
been discussed in the literature [8,9], and will be dis-

cussed further in our longer paper. )
After a decay or scattering interaction, causality im-

plies that the spacetime at large distances cannot be im-

mediately affected, so parallel transport around a large
enough loop must yield the same answer after the interac-
tion as it did before. But the resulting matrix must be the
same for all loops that enclose the particles, independent
of the size of the loop. Thus, the Lorentz matrix Tt $ that
describes parallel transport around a group of interacting
particles must be conserved; that is, evolution from a col-
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lection of N particles to M particles must satisfy

Ttot T/v Tv —]
' ' ' T] —T~T~ —]

' T] (2) Identify

This is the law of conservation of energy and momentum
[6].

The three Lorentz generators J—=M~2 (rotation) and
K;=—M;0 (boosts, with i =1,2) form a tensor M„„which
can be represented by a pseudovector 1„=2 t.„M&,
where e» is the fully antisymmetric tensor (so~2 =—I),
and indices are raised and lowered with the Lorentz
metric rt„,=diag[ —1, 1,1]. The matrix describing paral-
lel transport can then be written as T=exp( —iy"2„),
where p" transforms as a Lorentz vector. For a single
particle y" is equal to (StrGM, O) in the rest frame, so in

an arbitrary frame it is 8xG times the standard energy-
momentum vector (yM, yMv). The total three-mo-
mentum P" of a group of particles is defined to be [6]

exp( i S/tG—P"2„)= Ttoi— (3)

—ia/2 0
R(a) =e

0 ia/2 (4a)

and a boost is

cosh((/2) e '~sinh(g/2)
8( )=e

e'~sinh(g/2) cosh(g/2)

where g is the rapidity of the boost (related to the veloci-

ty by v =gtanh~g~), and p is the angle between g and the
x axis. The matrix T for parallel transport around a par-

In the limit G 0 the product (2) can be expanded as
7= 1

—8/riGS„+„p„", so in this limit one recovers the
standard conservation laws of special relativity. (Note
that, for nonzero G, P" is generally not the sum of the in-

dividual pg. )
For convenience we represent the (2+ 1)-dimensional

Lorentz group by 2X2 matrices [elements of SU(l, l)],
taking J = —,

'
a3 and K; =

& ia; (where the cr; are the Pauli
matrices). A rotation is given by

FIG. I. An equal-time surface before the decay. For later
convenience, the total deficit angle atot is divided into two seg-
ments, ag and a8.

ticle is given by evaluating Eq. (1):

where

( I + 2) I/2 /a /2

—ipe'~

ipe

( I + 2) I/2eia/2 (s)

p=sinhg sin(a/2) = yv sin(a/2)

is a measure of the momentum of the particle, and a' is
defined by

tan(a'/2) =cosh/tan(a/2) . (7)

Decay of one particle into two The.—decay of one
self-gravitating particle into two is an intractable problem
in (3+ I)-dimensional gravity. In (2+ I)-dimensional
gravity the dynamical equations are simpler, but it is not
obvious that there exists a consistent solution. The space-
time must be constructed by stitching together regions of
Bat spacetime in a way that maintains the proper deficit
angle around each particle, but does not instantaneously
change the spacetime at large distances from the decay.
In this section we use the conservation laws to explicitly
construct such a spacetime.

Consider the decay of a particle at rest, with deficit an-
gle a&„t, into two particles A and 8. The matrix for paral-
lel transport around particle A and then 8 is given by

~ T» =V'T~, w«h

Tf)" =[(I+p~)(1+pa)] ' exp[ —i(az+a8)/2]+pqpttexp[i(P~ —ps)],

T)2 =i (p~(1+ptt) ' exp[ —i [(att/2)+ p~]]+ptt(1+p~ ) ' exp[i [(aq /2)
—ps]] ),

TBA TBA+ TBA TBA+
2 I ]2 ~ 22 l I

The conservation law (2) requires that this matrix corre-
spond to a rotation by a„& of the form of Eq. (4a).
Equating these matrices yields the following relations [9]:

PA =PB=P

Qq + QB atot,

4a =& aioJ2

In the G 0 limit, Eqs. (9) and (10) become conserva-

264

tion of momentum and energy in special relativity. Note
that Eq. (11) indicates that the particles are not emitted
at 180; although they do come oA' back to back, the con-
ical geometry implies that the angle between them is half
of the total available angle, which is 2x —Qt

It is useful to dra the constant-time surface before
the decay so that the deficit angle at, t =aA+ QB is divided
into two pieces, as sho~n in Fig. 1. Consider the decay as
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witnessed by an observer in the upper half plane of the di-
agram, as shown in Fig. 2, with p~ =a~/2 and ptt =z
—att/2. The vertical velocity of particle A is given by
v~ =tanh(~ sin(a~/2) =p~/(p~+ I ) ' . Since p~ =ptt,
the vertical velocity is the same for both particles, and the
line that joins them is horizontal. Knowing that the
metric far away is not aA'ected by the decay, we can con-
struct a coordinate system in the lower half plane so that
the identification lines at large distances are the same as
in Fig. 1. The spacetime is flat except at the locations of
the particles, so the identification lines can be continued
inward to the location of the moving particles. The parti-
cles are moving along the identification lines, so they can
also be drawn in the lower half of the diagram. Since
there is a unique straight line that joins A and 8, the hor-
izontal line in the upper half plane can be identified with
the corresponding line in the lower half plane.

Two observers who were stationary relative to the par-
ticle before the decay, one in the upper and one in the
lower half plane, will each see particles A and 8 moving
toward them with a velocity component U„. They will
therefore have a relative velocity, as measured through
the line connecting A to 8, given by the Lorentz veloc-
ity addition formula v =2v~/(1+v~) =2p(1+p ) 't /(1
+2p ). (This is an example of the cosmic-string wake
effect. ) Equivalently, a particle which is at rest in the
upper half plane of Fig. 2 will, when intercepted by the
moving line AB, reappear in the lower half plane with a
downward velocity v. A more complete description of the
spacetime and its coordinatization will appear in our next
paper.

The Gott time machine The tim. —e machine described
by Gott [3] consists of two particles whose velocity vec-
tors are at 180', with nonzero impact parameter. This
configuration contains closed timelike curves provided
that each particle satisfies

cos(4+GJ —P') if P'&0,
& Tr[exp( —i8ttGP"2„)] =

cosh(4ttG JP') if P'&0.

(i3)
From Eq. (8) one has 2 TrT "=1—2g . Thus the re-

quirement (12) implies that —,
' TrT & —1, which is not

covered [101 by either of the cases in Eq. (13). However,
SU(1,1) is a double cover of the Lorentz group SO(2, 1),
so the matrices + T " correspond to the same Lorentz
transformation. Since —,

' Tr( —T ")& 1, Eq. (13) im-

plies that P & 0; thus, the momentum of Gott's time
machine is spacelike, or tachyonic.

To see the significance of the spacelike momentum, im-

agine approaching Gott's time machine, starting with

slowly moving particles and then considering larger
values of g. From the total momentum of the system as
defined by Eq. (3), we can calculate the center-of-mass
velocity:

1 i i/2

g —sin a/2
&'c.m.

=
1
—sin a/2

(i4)

From this it is immediately obvious that v, approaches
unity as g 1. Furthermore, the total deficit angle in

the center-of-mass frame satisfies

where g is the rapidity of the particle, and a is its rest-
frame deficit angle.

For simplicity we will consider the case of two identical
particles. Parallel transport around a loop encircling the
two particles results in a transformation matrix T " of
the same form as Eq. (8), but with the parameters a~
=att=a, gg=(tt=(, &~ =a, and &8=0. To decide if
this corresponds to a timelike or spacelike three-mo-
mentum, we need only calculate the trace of T, since
one can show that

g=coshgsin(a/2) & 1, (i2) cos(a, m /2) = I —2g (is)

Identif

7/~+/Yi8/YP

I lG. 2. An equal-time surface after the decay. The decay
particles move along the identification lines, and at any time the
two particles have the same y coordinate. Horizontal lines are
drawn connecting the images of 8 and B both in the upper and
lower half planes, and these two lines are identified. Note that
the picture is consistent with causality: The spacetime far away
is not affected by the decay.

implying that a, approaches 2x as g 1.
The tachyonic nature of the three-momentum of the

time machine does not imply that the solution is in-

valid —it remains an exact solution to the equations of
general relativity. It does suggest, however, that the sys-
tem might be impossible to construct in realistic situa-
tions. Suppose we try to build the time machine in a
universe that starts without CTC's. For example, imag-
ine two particles at rest, each of which decays into two
particles. Each parent particle must then produce an
oA'spring 8 that obeys the condition gz & 1. To see the
effect of such a large value of g, we can use Eqs. (6), (7),
and (12) to express p~ in terms of g~ and a~. Using
these equations again with pp =p~, we can express a~ in

terms of these variables and ae. Equation (10) then im-

plies that the deficit angle of the parent is given by

a~.„,„t=tt+a~ —2arcsin[sin(a~/2) [g~
' cos(aa/2)]] .

(i6)
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This implies that if g& & 1, then ap „,„&&z. Since two
parent particles are required to produce the time
machine, the total deficit angle must exceed 2z, closing
the (2+ I)-dimensional universe —the decay of two sta-
tionary particles in an open universe can never create a
Gott time machine.

The calculation of the previous paragraph can be gen-
eralized to the case of rocket propulsion, in which a parti-
cle emits many small ejecta. In our forthcoming paper,
we demonstrate this and a stronger result: In an open
universe composed of point particles with a total
momentum that is timelike, no two of these particles can
ever have a high enough relative velocity to make a Gott
time machine

We have found an insurmountable obstacle to building
a time machine in (2+ 1)-dimensional gravity under a
certain set of reasonable initial conditions. There is

a sense in which, if it were possible to create CTC's,
(2+ I)-dimensional gravity would be the ideal arena—the absence of curvature in a vacuum prevents the
creation of event horizons which could enclose the CTC's.
Our inability to produce CTC's in this idealized situation
suggests that there may also be obstacles to creating time
machines with finite segments of cosmic string in the real
(3+ I )-dimensional world [11].
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Note added. —Since submitting this paper, we have
shown that in a closed (2+1)-dimensional universe, it is
possible to build a Gott time machine from the decays of
initially static particles. The construction will be de-
scribed in a forthcoming paper.
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