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Time-Invariant Structure Factor in an Epitaxial Growth Front
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lt is shown that the dynamic-scaling-hypothesis description of an epitaxial growth front leads to a
time-invariant structure factor in reciprocal space. This invariant structure factor is a result of having
both stationary step density and step distribution during growth. The structure factor exists in the scal-

ing regime where both the interface width and lateral correlation length grow in time according to power
laws. This invariant characteristic, which manifests itself in the short-range behavior in the multilevel

crystal surface, can be readily tested in a diffraction experiment.

PACS numbers: 64.60.Ht, 61.14.Hg, 6S.55.3k

Recently it has been shown that the dynamical scaling
approach [1-3] is an extremely fruitful tool for describ-
ing the temporal evolution of complex interface growth
problems. A fundamental understanding of the micro-
scopic aspects of the dynamics of interface growth is not

only of prime interest for thin-film growth and material
science but also for numerous technological applications.
In the dynamical scaling approach two correlation
lengths can be defined, one perpendicular to the surface,
denoted by w, and another one parallel to the surface,
denoted by g; w is also called the interface width. In the
scaling regime, the two correlation lengths evolve in time
as power laws: w-tt' and g t~~', -where the exponent P
is related to the rate of growth of the surface and a de-
scribes its "roughness. " The values of exponents a and P
depend on specific models of growth. The dynamical
scaling hypothesis leads to an equal-time height-height
correlation of the form [1,3]

H(r, t) =([h(r, t) —h(0, t)] ) =2[w(t)] g, (1)
&(t)

with g(x) =x ' for x ((1 and g(x) =1 for x » 1. Here a
surface atomic position is represented by the lateral coor-
dinates, (x,y) =r, and the vertical coordinate (along sur-

face normal direction), z =h(r, t).
In this Letter we show that the dynamical-scaling-

hypothesis approach leads to an interesting invariant
structure factor which can be readily tested in diffraction
(such as the low-energy electron diffraction and the sur-

face x-ray diffraction) experiments.
The kinematic diffraction from crystal surfaces con-

taining stepped structures has been well understood in

two extreme cases; one is the flat surface with a narrow
interface width of few atomic levels [4-6], and the other
is a rough surface containing an unrestricted number of
atomic levels with a divergent interface width (w ~)
[7-9]. Rigorously speaking, most of these models are not
suitable for the description of a growing interface that in-

volves a large number of atomic levels but still has a finite
interface width w. The diffraction theory proposed by
Sinha et al [10] deals with sur. faces having a large w;

however, it is for a continuous surface, not for a stepped

surface. Furthermore, it does not address the time-
dependent growth problem.

Similar to the diffraction structure factor defined in the
conventional self-similar domain growth problem [11],
one can define a diffraction structure factor for the
present self-affine interface growth problem as

S(kt, k&, t) =„d r C&(r, t)exp(ikt r),P 2 (2)

where k}[ and k& are wave vectors parallel and perpendic-
ular to the surface, respectively. The height diA'erence

function C&(r, t ) is defined as

C&(r, t ) =
(exp [i& [h (r, t ) —h (0, t )]})

= exp[ —
—,
' [y]'H(r, t)}, (3)

where p=k~c (c is the vertical lattice spacing), and [p]
means 1t modulo 2tr such that —tr ~ [p] ~ tr. The
diA'raction structure factor Eq. (2) is a measure of the
fundamental nonequilibrium properties of the system and
is directly proportional to the scattered intensity in a
diA'raction experiment. The last step in Eq. (3) is ob-
tained by treating the height difference, [h(r, t)
—h(0, t)], as a discrete stochastic Gaussian variable
[7,12]. The discrete and periodic features of a crystal
surface manifest themselves in the relations C2 „(r,t) =1
and C&+2~,(r, t) =C&(r, t) (m =0, + 1, +'2, . . . ). These
relations differ from the result obtained from the model
proposed by Sinha et al. [10], where the continuous sur-
face height distribution leads to a nonperiodic expression,
C&(r ) exp [—p 2H (r)/2].

Combining Eq. (2) with Eqs. (3) and (1), and expand-
ing Eq. (2) with respect to [p] w [1 —g(r/g)], one can
rewrite the diffraction structure factor as

$(kt, k ~, t) -e h(kt) +Saar(kr, k ~, t ),
with the diffuse structure factor

&am(kt, k~, t)

(2')

pn pao
x dx [1 —g(x) ]"Jp(k tax), (4)

n-i n! ~0

where h=[tt] w and Jp(x) is the zeroth-order Bessel
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function. The structure factor (2') contains a b function
[yj 2~2

with a coefficient e =e ~, showing the global
(long-range) feature of the interface during growth.
That is, the surface roughens microscopically but still
remains flat macroscopically. In contrast, the diffuse
structure factor, Eq. (4), measures the short-range rough-
ness characterized by the atomic step density or average
terrace size.

The asymptotic form of Eq. (4) as 5&)1 is given by
(cf. Appendix)

Sg;n'(kt k i t ) ((d ) F (k t(d ) (5)

where F,(y) fp xdxe Jn(xy). Equation (5) must
be time invariant since it is a function of gh

q[p] '~', where tl =gw '~' is a time-invariant quanti-
ty.

Practically, the b component in Eq. (2') must be negli-

gibly small, because e 0, as A&&1. The diffraction
structure factor (2') can thus be represented only by its
time-invariant diffuse component,

S(kt, k~, t) =Spar(kt, k~, t)
—(ly] ti) F (ks[y] tl) (A)) 1) . (6)

As shown in the Appendix, the integration in F,(y) is

dominated by the height-height correlation at short dis-
tances. The time-invariant nature of Eq. (6) is indeed a
result of the time-invariant characteristic of the height-
height correlation at short range (globally, both w and g
still grow in time),

G(r, t) —2n (r/g) '=2(r/rI) ' (r((() .

This interesting phenomenon can be understood from a
simple growth process, the random deposition with sur-
face difl'usion, studied both by Family [1] and by Ed-
wards and Wilkinson [13]. After a transient period of in-

itial buildup from random fluctuations of the deposition,
the competition between the fluctuations and the local
diffusion has reached a balance in the short range but not
in the long range. The interface thus has a short-range
stationary state (time independent) while a long-range
steady growth (time dependent) proceeds in the form of a
dynamic scaling.

The time-invariant characteristic, shown in Eq. (6),
can be readily tested in a diffraction experiment. For
most diffraction techniques (except light scattering), the
condition h = [p] w» 1 can be easily satisfied at the
near-"out-of-phase" diffraction conditions where [p]) l.
(Note that the continuous surface model [10] cannot give
these near-out-of-phase conditions. ) For w as small as 5,
[P] w is as large as -250 at [p]=x and -60 at
[p] =x/2. At these conditions, the structure factor shown
in Eq. (6) is most sensitive to the variation in the step dis-
tribution. The fact that Eq. (6) is time invariant implies
that both step density and step distribution do not change
in time.
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FIG. 1. The line shapes of the structure factor, Eq. (6},plot-
ted at the out-of-phase condition, p x, for different average
terrace sizes, @=5, 20, and 50 (in units of the lattice constant
a}. The roughness exponent a is assumed to be 0.3.

The line shape of the structure factor, Eq. (6), has a

full width at half maximum (FWHM) proportional to
[P]'~'/rl. Diffraction theories have shown that in the vi-

cinity of [p]-z, the FWHM is inversely proportional to
the lateral average terrace size [9]. Therefore, q is a very

important quantity which measures the atomic step densi-

ty at the growing surface. Figure 1 shows the charac-
teristics of the invariant structure factor for several

different values of the step density, 1/t}. The roughness

parameter a is assumed to be 0.3.
The short-range behavior discussed above does not in-

clude the roughness associated with the "intrinsic width"

discussed recently [14,15]. The intrinsic width usually

has an atom-scale lateral correlation length. Such a
short-range random fluctuation can only contribute a
Debye-Wailer-like factor to Eq. (6) and does not change
our conclusions based on the line shape of the structure
factor.

Experimentally, the step density can be obtained either
from the measured FWHM of the diffraction line shape
or from the peak intensity as a function of [tt]. Accord-
ing to Eq. (6), S(O,k&) cL [P] ~' and FWHM a: [p] '~';

i.e., both the peak intensity [ cx: S(0,k & )] and the
FWHM have the forms of power laws in k~. The slope
of the plot of ln[S(O, k~)] vs In~[&]) gives the value of
—2/a while the plot of ln(FWHM) vs in~[&]~ shows a
slope of 1/a. The roughness exponent a can therefore be
extracted from these measurements.

The other growth exponent, P, cannot be obtained from

Eq. (6), which is insensitive to the global surface
features. However, we can show from Eq. (4) that the

2613



VOLUME, 68, NUMBER 17 P H YS I CA L R EV I E%' LETTERS 27 APRIL 1992

structure factor (2') has the form

S(k~~, k~, t) ~ e 'b(kii)

+e 6( x dx [I —g (x)]Jo(k ~~(x ),
(8)

at the near-"in-phase" diffraction condition, where [p]
-0 and A=[pl w « I. Slightly different expressions
have also been obtained by Sinha et al. [10] and by
Wollschlager, Falta, and Henzler [6] for the measure-
ment of the interface width of a rough surface. In con-
trast to the behavior in Eq. (6), the structure factor at
6« I, Eq. (8), is not time invariant, but is extremely sen-
sitive to the long-range behavior of the growing interface.
Experimentally, the value of P can be measured from the

peak intensity as a function of time according to Eq. (8).
A detailed discussion of this issue will be presented else-
where [16].

Our results not only generalize the continuous surface
diffraction theory [10] to the case of the stepped surfaces
involving the time-dependent crystalline film growth

problem, but also reveal several important features that
have not been predicted previously. The conclusion that
the out-of-phase diffraction from a multilevel crystalline
interface is only sensitive to the short-range behavior pro-
vides us with a fresh insight into the surface diffraction
mechanism. The time-invariant quantity rt =(w

which has not been discussed before, is clearly connected
to the surface step density through Eq. (6).

So far, no experimental work has been reported on the
study of the time-dependent dynamic scaling behavior
during the growth of a crystalline thin film. Most of the
work reported to date has concentrated on the characteri-
zation of static fractal [17] properties of polycrystals
[18],amorphous media, or porus media [19]. One recent
experiment [20] reported a study of the dynamic scaling
in an etched crystalline interface by ion bombardment.
However, this is still not a direct approach for studying
the common growth problems. It is hoped that our pre-
dicted invariant structure factor, which can be measured
readily in a diffraction experiment, will stimulate new ex-
perimental efforts in future studies of the dynamic scaling
behavior in complex nonequilibrium problems.

This work was supported by the U.S. National Science
Foundation under Grant No. 8906003. We acknowledge
valuable discussions with K. Fang and thank Dr. G. L.
Salinger for reading the manuscript.

Appendix: The derivation of Eq. (5).—From Eq. (4),
we make a transformation, x z, defined by

e ' = I —g(x),
(A I )

x =Q(z) =g '(1 —e '),
where g (y) is the inverse function of y =g(x). Equa-

I tion (4) then becomes
OO

Sd;tr(kt, k~) cx:g g e n 't 'J dze ' Q(zn ' ')Q'(zn ' ')J (S~~~(Q(zn
' '))

n ) gl 0
(A2)

Since the function Q(z) is expected to be an analytical function in the region 0 ~ z & +~, one can expand the prod-

uct,

Q(p)Q'(p) Jo(yQ(p)) = Z &t, (y)p",
0

as a Taylor series in terms of p. Inserting Eq. (A3) into Eq. (A2) gives

(A3)

1 QO gn
Sda(kt k~) exp dze ' g Cg(k()g)z" e g n~0 0 n-i &t

(A4)

Under the condition h, )) 1 we can show that

n

P(h, s)= gn '-e—6 ' (h»1) .
n-i &!

For s =integer ~ 0, the proof of Eq. (AS) is straightforward because as 5

(AS)

P(h, s)
hp —s

dP(h, s)/dh P(h, s —1) P(h, I) P(A, O) e —
1

d(e 4 ')/dh e~h ' ' e 4 ' e e

The rigorous proof of Eq. (A5) for an arbitrary value of s will be published elsewhere [16].
Thus, using Eq. (A5), one can simplify Eq. (A4) as

p oo p oo

Sda(knur k ~) CL g x dx[1 —g(x)] Jo(kt(x) = r dr 1
—g — Jo(k~~r) .~0 Jo

The scaling function g(x) indicates that

1 —(r/() for r «(,
0 f

(A6)
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Given the condition of h, »1, we have

1 —g— e "~ for r&&g,
exp bin 1 —g— 0 for r =any other value.

Therefore, only in the region 0~ r&&( can the function [I —g(r/g)] have a significant contribution to the integral of
Eq. (A6). We can thus replace the function [I g(—r/()] by e '/~ in Eq. (A6), which yields Eq. (5).
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