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Packet Spreading, Stabilization, and Localization in Superstrong Fields
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We examine the stabilization regime for an atom interacting with a superintense laser field. We inves-
tigate the transition from the ground-state wave function to the formation of a stable localized wave
function. The quantum mechanical wave-packet spreading plays a key role in determining the final de-
gree of stabilization. We compare simple analytical predictions with exact numerical calculations and
stress the importance of the laser pulse shape for the final ground-state probability.
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Recently it has been discovered theoretically [1-8] and
experimentally [9] that ionization of atoms can be
suppressed in superstrong fields. This phenomenon has
been called stabilization and it is characterized by a de-
creasing ionization probability with increasing laser in-
tensity. Basically two different theoretical frameworks
have been developed which predict this rather counterin-
tuitive behavior. One of them is restricted to atomic sys-
tems with a Rydberg series of energy levels [4-6]. The
second type of stabilization was already predicted in 1984
by Gavrila and co-workers for large laser frequencies [1].
In their theory a transformation to an accelerated coordi-
nate frame [Kramers-Henneberger (KH) transformation]
[10] which oscillates with a binding-free electron in the
field has been proven to be very helpful. In this frame,
stabilization was shown to be due to an effective excita-
tion of bound eigenstates of a time-averaged (KH) Ham-
iltonian whose decay rate is a decreasing function of laser
intensity. This mechanism of stabilization was investigat-
ed in exact numerical calculations by Su, Eberly, and
3avanainen (SEJ) [2] for one spatial dimension and by
Kulander, Shafer, and Krause [3] for three dimensions.
Spatially the excitation of the KH bound states becomes
manifest in form of a localized wave function which has a
characteristic two-peak (dichotomous) [1] or multipeak
(polychotomous) [7] structure. For a sufficiently high
laser intensity the low-lying KH bound states have their
main spatial support far away from the center of the
atomic potential and their overlap with the bare ground-
state wave function can be vanishingly small for super-
strong fields.

In this Letter we will investigate the transition from
the ground-state wave function to the quasistationary
(KH) regime characterized by a fully developed localized
(polychotomous) wave function. Up to a characteristic
time the main decay mechanism of the ground state is
connected with the quantum mechanical spreading [11]
of the electron wave packet, which is initially given by the
ground state and becomes free from the interaction with

the atomic potential in a superstrong laser field. The
atomic binding potential plays surprisingly almost no role
for the electron's dynamics; only at later times does the

presence of the atom become quite important and lead to
the formation of the already mentioned localized (poly-
chotomous) wave function. The transition between these
two regimes becomes clearly apparent in the time depen-

dence of the wave function as well as the final ground-
state probability after the end of the pulse. A fully

analytically soluble model leads to well interpretable re-

sults which are confirmed by exact numerical calcula-
tions.

We have solved numerically the time-dependent
Schrodinger equation for an electron initially in the
ground state of a one-dimensional short-range potential
V(x) [12] under the action of a superstrong laser field
8(t)sin(tot). The envelope t (t) was linearly turned on
and off over two optical cycles (co=0.0628 a.u. ) with a
steady plateau value of 8=0.64 a.u. This pulse shape
has the desired feature of a very rapid turn-on without
leading to any drift motion which could deplete the
ground state in the plateau region. The special impor-
tance of the appropriate turn-off will be discussed belo~.

A field strength of 8 =0.64 a.u. is certainly in the sta-
bilization regime because (as we will show later) a weak-
er field (t' 0. 1 a.u. , e.g.) would completely photodetach
the atom within a few optical cycles, whereas for 8 0.64
a.u. , e.g. , an appreciable amount of population can sur-
vive in the ground state.

In Fig. I we monitor two snapshots of the time-
dependent electron's spatial distribution )%'(x, t)~ in the
field's plateau region after (a) 4 and (b) 40 optical
periods. In the superstrong field the laser force is much

larger than the binding force such that the laser field sirn-

ply pulls the electron out of the atom in the direction of
the field. However, it is important to stress that this pro-
cess is quite different from the usual one-photon or multi-
photon detachment [13] which is based on the inelastic
absorption of one or several photons. The center of the
wave packet merely oscillates like a classical particle be-
tween its two turning points ~A/to [which value is
= 160 a.u. for our parameters and much larger than the
initial width (exp=5. 1 a.u. ) of the wave function] while

its spatial width hx(t) is increasing. To stress the ir-

relevance of the atomic potential V(x) for short times,
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FIG. 1. The spatial distribution of the wave function
i%'(x, t)i after (a) 4 and (b) 40 optical cycles. For comparison
the smooth curve corresponds to the binding-free time evolution

of the ground-state wave function. The classical turning points
at ~ 8/ro are marked by the arrows (8 0.64 a.u. , ro 0.0628
a.u. , linear turn-on over 2 optical cycles).

gx(r) ~(4/x +r ) 'i /2/xu

The characteristic time t * is determined by the require-
ment hx(t ) 8/ui and corresponds for our parameters
(8 0.64 a.u. , ui 0.0628 a.u. ) to roughly 16 optical cy-
cles. The good agreement [14] between the electron wave
function with and without the atomic potential is intui-
tively anticipated. In the superstrong field the electron's
oscillatory velocity is extremely large (=8/ui) when it
passes over the (narrow) atomic potential. Correspond-

the second (smooth) curve in Fig. 1 corresponds to the
free development of a wave function 4' in the absence of
the binding potential. The agreement between the two
wave functions with and without the atomic potential
remains good until a characteristic time t*, when the spa-
tial width hx(t) becomes of the order of the maximum
excursion 8/ui2. If we approximate the ground state by a
Gaussian wave function this width is given by

w, (T) = l&y, I~(»&l'

2(hxu) '
exp[ —El,

[4(~x,) '+ T'l '" (2a)

where the positive exponent E is given by

ingly the effective interaction is vanishingly small and the
presence of the atomic potential is expected to be rather
irrelevant.

The second time regime [Fig. 1(b)] is entered after
time t* when the wave packet has spread over the whole
oscillation interval ~ 8/co . Now the electron wave

packet is so broad that it can overlap with the atomic po-
tential even when the center of the wave packet is far
away at one of its turning points. Around these instants
of time the wave packet is at rest and can therefore
efficiently interact with the potential to form the localized
(polychotomous) shape of the wave packet as predicted
by the KH theory. This illustrates how spreading can
contribute to the population of the spatially localized KH
states. Note that the width of this trapped portion in Fig.
1 (b) agrees very well with 8/r0 .

The same transition from the spreading to the quasista-
tionary KH-SEJ regime can be observed if we compute
the final ground-state probability i(hagi%'(T))i as a func-
tion of the pulse length T [Fig. 2(a)]. For comparison we
show in Fig. 2(b) the corresponding projection for a wave
function 4'(T) whose time evolution was computed
without the atomic potential. Both curves are almost in-
distinguishable up to pulse durations T (r, where t* is
the already described time based on the spatial properties
of the wave packet. In the spreading regime the max-
imum amplitudes of this projection decrease inversely
proportionally to time [15] due to the wave-packet
spreading, which plays the key role for the irreversible
decay of the ground state.

The fact that up to the characteristic time t* the dy-

namics is not influenced by the atomic potential at all en-

ables us to describe the full quantum evolution even

analytically in the framework of a simple model. The
corresponding Schrodinger equation without the atomic
potential V(x) describes the Volkov evolution of the wave

packet initially coinciding with the ground-state wave

function yg. Such an equation can be solved analytically

[16] with yg modeled by a Gaussian function [17] to give

the atomic-force-free wave function +. The residual

ground-state probability wg after the pulse is turned off is

determined as

2(&xu) '[x (T)]'
4(~xo)'+ T'
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2T(hxu) x(T)x(T) (Axu) [2(hxu) s+9T2(gxu) 4+ T4] [x(T)]2

4(»o) +T' [4(&xu) +T ][(A x)'u+ 'T]

Note that only classical parameters like the excursion x(T) and the velocity x(T) [x(0)=x(0) =0] of a classical

binding-free electron in the laser field enter this expression which is applicable for any pulse shape A (t) It shows that.
in a superstrong field the residual ground-state probability wg is not exponentially small only if x(T) =0 for any T, e.g. ,
if there is no drift after the end of the pulse. This condition is automatically fulfilled for our chosen trapezoidal pulse

shape C(t) and for almost all realizable laser pulses [18]. Under this condition w~(T) is maximal at those pulse dura-
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FIG. 2. The final ground-state probability ws(T) as a func-
tion of the pulse duration T. (a) Numerical simulation with the
atomic potential V(x) fully taken into account. (b) Same as
(a), but the analytical prediction [Eq. (2)]. The arrow marks
time t (8 0.64 a.u. , r0=0.0628 a.u. , linear turn-on and turn-
oA' over 2 optical cycles).

tions T at which the final electron displacement x(T) is

zero.
In case of an abruptly turned-off laser field of the same

strength we find (in agreement with our analytical formu-
la) a maximum ground-state population of only less than
2% which stresses again the importance of an appropriate
pulse turn-off. An abruptly turned-off laser pulse cannot
automatically fulfill both requirements x(T) =0 and
x(T) =0 at the end of the pulse.

We would like to stress that the spreading regime cor-
responds to the asymptotic behavior in a superstrong field

in which the maximum remaining population in the
ground state does not depend on the field strength 8 at
all. This result is illustrated in Fig. 3 ~here this probabil-
ity is plotted for various laser field amplitudes 8 after a
smooth pulse of 6 optical cycles. The weak field regime
(8 (O. l a.u. ) is characterized by a decreasing ground-
state population. In the strong field regime (8=0.1

a.u. ) the pulse can completely photodetach the electron.
The growing part of the curve (8) 0. 1 a.u. ) corresponds
to the effect of stabilization for our short-term potential.
The maximal degree of stabilization is determined by
spreading and is indicated in the figure by the dashed
line. This degree depends only on the laser pulse duration
[Eq. (2)] and cannot be increased by any means because
there is no way to exclude spreading in a superstrong
field.

Our analysis has been presented for one spatial dimen-
sion to facilitate a quantitative comparison with an exact

FIG. 3. The final ground-state probability ws(8) after a
pulse duration of 6 optical cycles as a function of the laser field
amplitude C. The dashed line indicates the maximum possible
degree of stabilization [Eq. (2)] (ro 0.0628 a.u. , linear turn-on
and turn-oA' over 2 optical cycles).

numerical calculation. A generalization of our final for-
mula [Eq. (2)] to three dimensions is straightforward and
would indicate a more rapid decay due to spreading [19].
Our study has been performed for a short-range potential
with only one bound state. However, we would expect
that the basic features discussed above occur similarly in

the ground state of a long-range potential. In case of a
long-range potential it is not clear, however, how much of
the spread wave packet would contribute to irreversible
ionization and which portion could be trapped by higher-
lying bound states.

We have shown that the occurrence of stabilization can
be characterized by two almost counterintuitive stages in

time. During the first few optical cycles of the laser pulse
the electron is "effectively" decoupled from the interac-
tion with the atomic potential and therefore cannot gain
energy irreversibly. In this regime spreading is basically
the only mechanism for decay. However, at a later time
when the width of the spread wave packet has exceeded
the classical free-electron quiver amplitude, this decay is

interrupted by the atomic potential. In this regime the
presence of the potential is crucially important for the
formation of the quasistable polychotomous wave func-
tion and its long time behavior. The KH-SEJ picture is
shown to be applicable only under the condition that the
field is not too strong [8/ru (/3x(t)] and the pulse dura-
tion is not too short. A laser pulse shape is most suitable
for trapping a maximum amount of population in the
ground state if a classical free electron would have both a
zero position and zero velocity at the end of such a pulse.
The spreading mechanism determines the maximum de-
gree of stabilization, or trapping of ground-state popula-
tion, achievable in a superstrong field.
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