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Path-Integral Solution of the Telegrapher Equation:
An Application to the Tunneling Time Determination
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Delay times relative to a beat envelope are deduced from a path-integral solution of the telegrapher
equation, analytically continued to imaginary time when the square of the effective velocity becomes
negative. The results are approximately described by a semiclassical model translated in frequency from
the nominal to an effective cutoff, thus improving the agreement with experimental results.
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A path-integral treatment of the telegrapher equatipn,
originally proposed by Kac [I], has been recently recon-
sidered in a very interesting paper by DeWitt-Morette
and Foong [2] demonstrating the usefulness of the
method. The essence of the procedure can be summa-

rized as follows.
Let us consider the telegrapher equation
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where a is a positive constant and F(x,0) =P(x), (8F/
Bt), o=0, p(x, t) being a solution of the wave equation
without dissipation (a =0). The solution of Eq. (I) can
be put in the form

F(x, i) = —,
' [(y(X,S(t)))+(y(x, —S(i)))],

where S(i) is a "randomized time" defined by

(2)

F(x, i) =
J

—' [p(x,r)+p(x, —r)]g(i, r)dr

=Jl —,
' [p(x,r)+p(x, —r)]h(i, r)dr, (4)

where g(i, r) is the distribution of S(i), while h(i, r)
g(i, r)+g(i, r)—is the di—stribution of ~S(t)~. The

functions h (i, r ) and g(i, r ) were evaluated by a
Laplace-transform analysis and they are given in Refs.
[2] and [4], respectively. The interest of this result lies in

the fact that if we know a solution p(x, t) of the wave

equation without dissipation we can obtain the solution of
the complete equation by evaluating the integrals in Eq.
(4). In such a way F(x, i) turns out to be constituted by
the superposition of two contributions: one corresponding

(3)

N(r) being a random variable with Poisson distribution
of intensity a. The brackets in Eq. (2) denote averaging
over all possible "checkerboard" paths connecting x(0)
=xe and x(i) =x~ [3].

It was demonstrated [2] that the solution F(x,i) can
be simply expressed by a quadrature:

to a damped undistorted wave and the other, with a linear
coeflicient in a, to a distorted wave.

We shall apply this method to analyze the results of
delay-time measurements in narrowed waveguides per-
formed as a test of tunneling time models [5]. The re-

sults of this experiment achieved with a standard mi-

crowave set up in X band, in order to magnify the time

range up to nanoseconds, are in rather good agreement
with the predictions of quantum-mechanical models

suitably translated into the (classical) electromagnetic
framework. The transposition was relatively easy since
the expressions of the delay time are directly related to
the complex transmission amplitude which, in turn, is de-
duced from the (time-independent) Schrodinger equation
for the motion of a particle of energy E in a potential Vp.

This equation is formally identical to the Helrnholtz

equation for the propagation of a scalar field, electric or
magnetic component of the wave, that is,

a2 ~+k'y=o
X

(5)

where k is the wave number. The only difference is in the
dispersive relation k =k(ro), which reflects the different
time dependence in the Schrodinger equation with respect
to the d'Alembert equation that describes the wave prop-
agation without dissipation, Eq. (I) for a =0. Once the
dispersion relations are properly taken into account,
the results of quantum mechanics can be adopted for
waveguides provided the substitution h/m c /2irv is

made [5,6] (c is the light velocity). Even if the two wave

equations describe the evolution of two quite different
quantities —the quantum wave function and the elec-
tromagnetic field —this does not prevent doing a test of
quantum-mechanical models, which are based on the evo-
lution of wave packets, provided that the above substitu-
tion is made. There is, however, a limitation in this anal-

ogy since "in contrast to tunneling particle, an elec-
tromagnetic pulse can consist of many photons and can
be probed in a noninvasive way" [7].

As for dissipative effects, which play a non-negligible
role, a first attempt to include them was made by model-
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ing a simple phenomenological scheme still obtained by
analogy with quantum mechanics [6]. We maintain,
ho~ever, that the best way to consider dissipation in wave

propagation is to start from the telegrapher equation.
This, in turn, could give a contribution towards the un-

derstanding of a complicated and controversial question,
like that of tunneling time, when the difference in the
dispersion relations is properly considered [8]. The
analysis of Ref. [2] is performed for a nondispersive sys-
tem, for instance a two-wire transmission line. There are
therefore some di%culties in applying the above pro-
cedure [namely, Eq. (4) or, more explicitly, Eq. (24) in

Ref. [2]] to a dispersive medium like a waveguide, which
below the cutoff for the presence of evanescent waves can
simulate quantum tunneling. Moreover, it is not immedi-
ately obvious how to apply Eq. (4) to any kind of signal.

These di%culties can be surmounted on the basis of the
following assumptions: (i) We assume that the telegra-
pher equation holds for the propagation in a waveguide,
and (ii) we apply Eq. (4) to a simple sinusoidal progres
sive wave of the type p(x, t) =sin(x —it) corresponding
to the beat envelope of the two waves (see below).

The first point is not trivial, as can be verified in the
specialized literature [9,10], mainly I'or the presence of
high-order modes induced by the narrowing of the
waveguide. Assumption (i) holds if one considers only
the principal mode inside the narrowed part of the
waveguide.

The second point makes the application of Eq. (4) rela-
tively simple [2,4]. At the same time the analytical re-
sults can be compared with the experimental ones from
recent delay-time measurements, performed with two
continuous waves of slightly different frequencies whose
beat envelope was detected before and after the narrow-
ing [S].

Let us consider the superposition of two waves of
slightly different frequencies [11]:

iii=3 cos(ctpir k ix)+3 cos(cour —k.x)

=23 cos(rot —kx) cos(hoot —hkx),

where co],~=co+ h, co and k~, 2=k+ dk. The first factor
in the last member of Eq. (6) represents the carrier while
the second one describes the beat envelope ~hose velocity
ii, =bio/hk is practically coincident with the group or-
signal —velocity. Therefore, by considering ib, we can
predict the delay time versus frequency once the disper-
sion relation is known. Neglecting the influence of the
carrier relative to the signal velocity —the Schuster model
[11]—we can consider only the second factor in Eq. (6),
namely, the beat envelope which, apart from unessential
dephasing, can be written as a continuous wave of the
type sin(x —vr), where v can be seen as the signal veloci-
ty. For our purposes, however, Eq. (4) cannot be applied
directly since i'(x, r)+ i'(x, —r) does not represent a pro-
gressive wave but rather a stationary wave. A generaliza-
tion of Eq. (4), with arbitrary mixing coeScients a and P

of the progressive and regressive ~aves,

ay(x, r)+Py(x, r)—, a+P = I, (BF/Br), Ox=0,

has been derived by I.oong [41. This allows us to obtain
F(x,i) for a progressive wave [sin(x —

i r), a= I, P =0]
in the simple form

F(x,r) =e "'[sinxcoswir —(v/wi)cosxsinwir

+ (0/w i )slnx sin w i r ],
where wi =(v —a-)' is an effective velocity. The last
term in Eq. (7) represents the "distorted wave" which
disappears when a 0. The first and second terms cor-
respond to the attenuated, nearly undistorted wave: In
fact, for a(«, ~]=i and we have an attenuated progres-
sive wave of the type sin(x —wit) whose effective velocity
w~ is lower than [. So, according to Kac's predictions
[I], the efl'ect of dissipation is that of reducing the
effective speed of the motion.

When a & [, the effective velocity w~ turns out to be
imaginary and F(x,r) becomes an aperiodic function of
the time, not suitable to interpret a delay-time experi-
ment. We consider, as usually done in connection with
semiclassical models, an analytic continuation of Eq. (7)
for imaginary time (ir -- r ) [12]. In such a way we find
that the nearly undistorted part resembles a pseudo pro-
gressive wave of the type sin(x —w2r), where iv&=(a'
—i '-) ' '-. In this case the distorted wave has substantial
influence on the amplitude ~Fli, but not on the delay time
(see below).

Analogously, when i becomes imaginary (i -' &0), as
in tunneling processes, the nearly undistorted part repre-
sents a pesudo progressive wave of the type sin(x —w3r ),
where w ~

= (a +
~

v
~
) ' -. Note that in this case the

effective (imaginary) velocity is increased by the dissipa-
tion [6].

So, on the basis of these considerations, we can derive a
first approximate model of delay time which is simply
given by L/~'i, ~.3 (I is the length of the waveguide) in the
different regions of [. -. In Fig. I the continuous line rep-
resents this model which is coincident with the semiclassi-
cal one apart from a significant shift of the singularity

2 2 2from ~
-=0 to ~'-=a-.

More accurate results can be obtained by considering
the complete form of' F(x, r) given by Eq. (7). The delay
time is obtained as the difference in time between the
same minima in the absolute value of F(x,r), computed
for x =0 and I, respectively. The results are reported in

Fig. l by open circles and, for comparison, the results ob-
tained by neglecting the last term in Eq. (7) (the distort-
ed wave) are marked by crosses. We note that the in-

clusion of the distorted wave tends to anticipate the ar-
rival of the signal in the tunneling region (v- &0) while
it tends to retard it in the classically allowed region
(i' ' & a '). In the intermediate region (0 & v & a ) the
two waves. which behave like stationary waves, give iden-
tical results. Something similar to the above results has
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FIG. 1. Delay time (in arbitrary units) as a function of v as
deduced from Eq. (7) computed for x=0 and x=L =l and

a =0.1. The continuous line corresponds to the simplified model

t =L/IVI .1. The open circles are exact results for delay time
while the crosses represent delay times obtained by neglecting
the distorted wave, the last term in Eq. (7).
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FIG. 2. Experimental results of r- vs frequency (open ctr-
cles) as deduced from beat-envelope amplitude data for L =15
cm, compared with the relative theoretical curve and beat-delay
data (solid circles) compared with the curve of rq (see Ref.
ISI). The heavy continuous line (r;) represents the modified
semiclassical model resulting from the solution of the telegra-
pher equation with a=O. le. This consists in a shift of the
cutoff frequency from v0=9.49 GHz to v0=9.54 GHz.

been obtained in the analysis of a different type of signal,
like a step function [l3]. There, by taking into account
the forerunner of the signal, the original semiclassical
model turns out to be sensibly modified, resulting in a
reasonable agreement with quantum-mechanical models
and, more importantly, with experiments [5].

In order to compare the theoretical model derived here
with the results of beat-delay measurements, we consider
for simplicity the approximate result represented by the
continuous line in Fig. 1. This can be easily compared
with experiments by assuming, as anticipated earlier, that
the signal velocity (v=—vs) is coincident with the group
velocity vx in the waveguide.

The semiclassical delay time, in the absence of dissipa-
tion, is given by t =L/fItx I where vg

f'or the TEPI mode is

[l4]
vx =c[1—(i /2b)'] ' -. (8)

Here X is the free-space wavelength and b the width of
the waveguide. In the presence of dissipation we have to
consider the eff'ective velocity ig=w given as follows:

(a) For v & a, that is, v& (vII+6 ) 't, 8=a/it,
r I/2

0 (9)v =c 1—
C

2

(b) For v &a and v &0, that is, v& (VII+8 ) '

2 I t/2

(g =c —1+0
2b

(lo)

In both cases the delay time is simply given by L/tg
This means that the pure semiclassical model, with a

singularity at v= vp, turns out to be shifted from vp to vp,

which can be interpreted as an effective cutoff given by
vp=(VII+6 )'I . The quantity 8 can be determined by
data fitting.

In Fig. 2 we report data for beat-envelope delay time
(solid circles) relative to a narrowed waveguide of length
L = l5 cm and a cutoff frequency vp=9. 49 6Hz, and the
curve of rr, (phase-time model) [5]. In the same graph
we also report data for r (open circles) -and the relative
theoretical curve. These data were experimentally deter-
mined according to the definition of r- in the electromag-
netic framework:

(lnT 't'),l 8
2tr 8v

where T is the transmission coefficient [5]. The heavy
continuous line represents the semiclassical model ob-
tained here, which, because of dissipation, shows a shift
in the cutoA frequency. The amount of this shift, as de-
duced from experimental behavior, is h, v0=0.05 6HZ.
This quantity corresponds to a value of the parameter a
given by

a =)tb =it(vp —vI21) It'=c(2hvp/vp) 't'=0. I c,
which appears to be reasonable. As before, more accu-
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rate results for the delay time could be obtained by con-
sidering the complete form of Eq. (7), but the essential
issue of the model is also captured by this simplified pro-
cedure. Thus, by inclusion of dissipation, we get a sensi-
ble improvement of the capability of the semiclassical
model to describe the experimental results, even if the re-
ported data are better described by the curves of r& for
the delay-time data, and r- for the corresponding points
[151. The latter appear to be in rather good agreement
with the modified semiclassical model well below the
eff'ective cutoA; thus suggesting that the present treat-
ment can also be connected to the Buttiker model [16]
and relative transition-element analyses [17-19]. In fact,
for opaque barriers, T=exp( —2tcL), where tc is the in-
verse tunneling decay length. Thus, by Eq. (I I) we have
[s]

2rrv t)
(I T (/2g 2R'v L

/ 5

On the basis of the present work we can safely con-
clude that the path-integral treatment of the telegrapher
equation, for the presence of dissipation, profoundly
modifies the semiclassical model, making it a suitable
candidate to interpret the experimental data. The results
obtained here, together with those relative to a step-
function signal [13], tend to supply a unifying scheme
useful in overcoming the dichotomy inherent in the deter-
mination of the tunneling time [20].
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