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Scaling of Transient Hydrodynamic Interactions in Concentrated Suspensions
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The mean-square displacement &hr2(r )) of particles in concentrated suspensions is measured at times

suSciently short to observe the transient nature of hydrodynamic interactions. For all volume fractions

p, the velocity autocorrelation function decays as a power law R(r) —r ~ . A remarkable scaling with

p is observed for the time-dependent self-dilfusion coefficient D, (r) &Ar (r)&/6r: If D, (r) is scaled by
its asymptotic value and if time is scaled by a viscous time inversely proportional to the shear viscosity of
the suspension, all the data fall onto a single master curve.

PACS numbers: 82.70.Kj, 05.40.+j, 66.20.+d, 82.70.Dd

The time evolution of the mean-square displacement
(hr (r )) describes the random Brownian motion of a
tracer in a fluid suspension of identical particles. It pro-
vides a quantitative measure of the particle dynamics in a
concentrated suspension, and captures much of the rich
behavior exhibited by these relatively simple systems [I].
At long times, (hr (r)) increases linearly with time,
reflecting the diffusive motion of the tracer resulting from
the interaction with the surrounding fluid and random en-
counters with other particles. At shorter times, (hr (r))
also increases linearly with time, but with a faster rate,
reflecting the diffusive motion of the tracer in the fluid
before it has moved sufliciently far to encounter its neigh-
bors. At even shorter time scales, the time evolution of
(hr (r ) & must be more rapid than linear, as the ballistic
motion, arising from the velocity imparted to the particle
by random collisions with fluid molecules, is viscously
damped. This complex motion of the tracer particle
is conveniently parametrized by the time-dependent
self-difl'usion coefficient, which we define as D, (r )

(hr (r ))/6r. As the velocity of the particle is viscous-

ly damped, D, (r ) must increase from zero until it
reaches a constant value, commonly called the short-time
self-diffusion coefficient D, . At even longer times, when
the tracer has diffused a distance comparable to the mean
particle separation, the value of D, (r) decreases until it
again reaches a constant, commonly called the long-time
self-diffusion coefficient.

Since the particles are immersed in a viscous fluid, hy-
drodynamic interactions play a crucial role in determin-
ing the behavior of D, (r) at all time scales. While hy-
drodynarnic interactions are essentially instantaneous at
the time scales typically measured, there is in fact a finite
propagation time for their effects and their transient, or
retarded, nature can have dramatic consequences at
sufficiently short time scales. For a single particle, the
hydrodynamic interactions with the surrounding fluid re-
sult in a persistence of the velocity as the vorticity dif-
fuses away from the particle. These hydrodynamic
memory effects lead to an algebraic, rather than exponen-
tial, decay of the velocity autocorrelation function R(r ),
the so-called "long-time tail" [2-5]. As the particle
volume fraction p increases, the fluid flow is disrupted by

the neighboring particles. These retarded hydrodynamic
interactions between neighboring particles must also be
reflected in the behavior of D, (r). Thus a determination
of D, (r) at these very short time scales would provide
important insight into the nature of transient hydro-
dynamic interactions. Unfortunately, the very short time
scales, and concomitant short length scales, have, to date,
precluded the accurate measurement of D, (r) in this re-
gime.

In this Letter, we present accurate measurements of
the time evolution of the self-diffusion coefficient in con-
centrated suspensions at very short time scales, and we

directly observe the consequences of transient hydro-
dynamic interactions on the decay of the velocity auto-
correlation function. We find a remarkable scaling be-
havior whereby all the data for different concentrations
can be collapsed onto a single master curve. We use
diffusing wave spectroscopy (DWS) in the transmission
geometry to resolve displacements very much smaller
than the particle size [6,7], essential for the accurate
measurement of D, (r). This dynamic light scattering
technique exploits the strong multiple scattering charac-
teristic of these concentrated suspensions by approximat-
ing the transport of light through the sample as a
diffusive process with a transport mean free path, I
Since the average number of scattering events of a typical
diffusive light path through a sample of thickness L is
n =(L/I ), DWS measurements are sensitive to indivi-
dual particle motion on length scales of order k/(n ) '~,
where A, is the wavelength of light. Although DWS mea-
sures a weighted average of collective particle motion
over all accessible scattering vectors q, it is sensitive to
the mean-squared displacement of individual particles if
the radius a is sufficiently large [8,9]. Moreover, since
each particle moves a distance hr(&A, , a cumulant expan-
sion can be used to approximate the contribution to the
correlation function from each individual scattering
event, relaxing the usual requirement that Gaussian
statistics describe the distribution particle motions, and
allowing the motions at the earliest times to be studied.

We use monodisperse polystyrene latex spheres, of 1.53
and 3.09 pm diam, suspended in water. The Debye-
Huckel screening length is sufficiently short that the in-
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teraction between particles can be approximated as a
hard-sphere potential [9]. Samples with p between 2%
and 30% were prepared from a stock solution; the abso-
lute values of p were measured to within O.S% by drying
and weighing. To probe the requisite short length and
time scales we use sample cell thicknesses of 1.0, 2.0, or
5.0 mm, ensuring that L/I* & 20 so that DWS can be
used. To measure the requisite short time scales we use a
new, high-speed, real-time digital correlator with sample
times as short as 12.5 ns. A beam splitter is used after
the final pinhole of the detection optics to split the light
equally into two photomultiplier tubes (PMT), the signals
of which are then cross correlated [10]. This greatly
reduces the effects of both afterpulsing in the PMT's and
dead time in the electronics. In addition, it is crucial to
use an intercavity etalon to force the laser to oscillate in a
single longitudinal mode. This eliminates frequency beat-
ing between adjacent modes that would be detected by
the high-speed correlator and also ensures that the coher-
ence length is considerably longer than the average pho-
ton path length through the samples, thus avoiding distor-
tion of the temporal correlation functions of the scattered
intensity [7]. An Ar+ laser producing 10-100 mW of
488.0- or 514.5-nm radiation is focused to a small spot on

one side of the sample cell which is immersed in a water
bath maintained at a constant temperature of 22.50
+ 0,01'C. To eliminate the effects of particle sedimen-
tation the sample is mixed every IO min. Data are col-
lected for up to 12 h to obtain good statistics.

The data are analyzed using the predicted DWS form
which is approximately exponential in (L/I*) k
x (d r (r )), where k is the magnitude of the incident
wave vector [6]. The data are numerically inverted, and
(dr (r)) is obtained using the calculated value of l . In

Fig. 1, we show a logarithmic plot of the time evolution of
the rms displacement measured for 1.53-pm spheres at

2.1/0. This figure illustrates the excellent quality of
the data obtained and demonstrates the sensitivity of the

DWS measurements to motion on length scales as short
as 1 A. Furthermore, by fitting the data surrounding
each point with a third-order polynomial, we can de-
termine the velocity autocorrelation function R(r )
= —,

' (d /dr )(r (r)) [1], which is also plotted in Fig. I.
The solid curve through the data for R(r ) is the theoreti-
cally predicted behavior for a single particle in a viscous

liquid [2]. The power-law decay is clearly apparent, pro-
viding the first convincing experimental evidence for the

3~ decay of R(r).
To investigate the effects of hydrodynamic interactions

on particle motion, we plot D, (r) for several different

volume fractions of 1.53-p.m-diam spheres in Fig. 2. The
data for the lowest volume fraction, p =2.1%, appear to
be indistinguishable from the theoretical prediction for
the zero volume fraction limit shown by the dashed curve.

Here, the characteristic time scale r„=0.61 ps is set by
the time for vorticity to diffuse one particle radius:
r „=a p/r)u, where p is the density of water and r)u is the
shear viscosity of water. For comparison we also plot, as
the dash-dotted curve, the behavior expected for D, (z) if
the retarded nature of the hydrodynamic interactions are
neglected so that R(r) decays exponentially [1]. This
comparison emphasizes the very slow approach of D, (r )
to its asymptotic value, which is still not achieved after
nearly three decades of time.

At the shortest time scales, the data for D, (r) for
different p cannot be distinguished within the resolution

of our measurements. As time increases, the data begin

to deviate from the zero volume fraction limit with the

higher volume fraction data appearing to deviate at ear-

lier times. At the longest times measured, the data ap-

proach the asymptotic values of the short-time self-

diffusion coefficient shown on the right of Fig. 2, allowing

us to estimate the volume fraction dependence of D, . We
find excellent agreement with tracer diffusion measure-

ments [11,12] and with theoretical predictions [13-15].
For all values of p, D, (r ) approaches its limiting value
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FIG. l. Logarithmic plot of rms displacement (left) and

velocity autocorrelation function (right) for 1.53-pm-diam

spheres at p 2.08% volume fraction in water. The error bars
in the data are indicated by the vertical lines. The solid line

through the R(r) data is the theoretical prediction, while the

dashed lines indicate the asymptotic power-law forms

&Ar (r))'~2 —r '~ and R(r) —r 3~2. The long-time tail in

R(r) is apparent.

FIG. 2. Time evolution of the self-diffusion coefficients for

I.53-pm-diam spheres for the volume fractions labeled in the

figure. The solid lines on the right indicate the asymptotic

values, D, . The dashed curve through the lowest volume frac-

tion data is the theoretical prediction for p 0, awhile the dash-

dotted curve shows the prediction ignoring hydrodynamic

memory effects.
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very slowly, suggesting that retarded hydrodynamic in-

teractions are playing an important role. To investigate
this, we numerically determined the velocity autocorrela-
tion function for all data sets. In each case, we observe
the same power-law decay, R(r) ee r i. Moreover, the
shape of each data set has the same functional form as
that predicted for zero volume fraction [2]. This is
confirmed by using a nonlinear least-squares routine to fit
the measured D, ( r), independently adjusting two param-
eters, the asymptotic value, D„and the characteristic
viscous time r„. We obtain excellent fits for each data
set. Thus by normalizing the fitting parameters, the data
can be collapsed onto a single curve as shown in Fig. 3.
The theoretical prediction for zero volume fraction is
shown by the solid curve, which is indistinguishable from
all the data The. spread in the data at the shortest times
results from the poorer accuracy at extremely short delay
times, while the spread at the longest times results from
systematic uncertainty in extracting the electric-field
correlation function from the intensity correlation func-
tion. Nevertheless, excellent data collapse is observed
over nearly three decades in time.

We observe the same behavior for the time dependence
of D, (r) and the same excellent scaling of the data with
volume fraction for the 3.09-pm-diam spheres, and hence
can again obtain the p-dependent values of D, and r„
which collapse the data. To within experimental uncer-
tainty the P dependence of D, is the same for both size
spheres. The tl dependence of the new viscous time scale
normalized by its zero volume fraction value, r „/r „, is
shown in Fig. 4. The I.53- (triangles) and 3.09-pm- (cir-
cles) diam spheres again exhibit identical behavior, de-
creasing with increasing p. Furthermore, their decrease
with p is substantially faster than that measured for D, .
In Fig. 4, we also plot the theoretical prediction [16] for
r)o/ri (P), where rlo is the shear viscosity of water and
ri (p) is the high-frequency, low-strain viscosity of a sus-
pension of hard spheres [17]. Surprisingly, the theoreti-
cal curve is in remarkably good agreement with our ex-
perimental data. Thus, r„a pirl (p) is a new viscous

time scale which characterizes the dynamics of the sus-

pension. This observation also accounts for the apparent
discrepancy previously reported between the zero-con-
centration theory and the data obtained at p =15/o [3].

While experimental observation of the scaling behavior
of the data is unambiguous, a physical understanding of
the origin of the scaling is more elusive. Physically, the p
dependence of r„suggests that at sufficiently long time
and length scales the diffusing vorticity is sensitive only to
the average, eff'ective, viscosity of the suspension. How-

ever, it is difficult to account for the diff'erent p depen-
dences observed for r „and D„which appear as a product
in the zero volume fraction expression for D, (r) which
describes the shape of the scaled data. Moreover, it is
also surprising that the scaling behavior persists to times
as short as r„/2, well before the power-law decay of
R(r) is reached Ph.ysically, we might expect D, (r) to
be independent of volume fraction at times shorter than
r o, since the vorticity cannot have diffused far enough
away from the particle for the flow field to be disrupted
by the nearest neighbors. However, if this were the case,
the scaling behavior would not extend to such short times.
The origin of this discrepancy may be the limited experi-
mental accuracy of our data at these short times.

Since the time evolution of the self-diffusion coe%cient
directly reflects the effects of hydrodynamic interactions,
it is an extremely difficult quantity to calculate theoreti-
cally. Nevertheless, a calculation of D, (r) including only
first-order, pairwise, hydrodynamic interactions has re-
cently been reported [18]. At low volume fractions, the
calculated results exhibit the correct qualitative trends as
found in our data. However, the calculated behavior ap-
pears not to exhibit the scaling behavior expected from
analysis of our data. Furthermore, the behavior calculat-
ed at higher volume fractions differs substantially from
our observations. This suggests that either higher-order
hydrodynamic interactions must be included or a more
realistic form of the particle correlation function must be
used.

The r power-law decay of the velocity autocorrela-
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FIG. 3. Scaling of the time-dependent self-diffusion coef-
ficients for 1.53-pm-diam spheres at several volume fractions.
D, (r ) is scaled by its asymptotic value while the time is scaled
by the viscous time constant. The solid curve through the data
is the theoretical prediction for p 0.

FIG. 4. Viscous time constant vs volume fraction for both
I.53- (triangle) and 3.09-pm- (circle) diam spheres. The solid
curve through the data is the theoretical prediction [l61 for
r)s/ri (ti), the inverse of the high-frequency shear viscosity of
the suspension normalized by its value at p =0.
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tion function is observed in simulations of atomic fluids
[19],where a single tracer interacts with a fluid of identi-
cally sized particles only through hard-sphere collisions.
It is also observed for a single, large colloidal probe parti-
cle immersed in a fluid of much smaller molecules [4].
Our results show that the same behavior is also obtained
for concentrated colloidal suspensions. In some sense,
these suspensions represent the intermediate case of in-

creasing volume fraction of large particles in a sea of
small particles. The same behavior is observed at all
volume fractions, even though the interactions between
particles are quite diA'erent. This presumably reflects the
hydrodynamic nature of the long-time tail, which occurs
after many collisions and hence is not sensitive to the na-
ture of the interparticle potentials.

The ability to study particle dynamics at time scales
comparable to the hydrodynamic interaction time, and to
observe the retarded nature of these interactions, provides
new insight into this complicated many-body problem.
The scaling behavior of D, (r ) reported in this Letter pro-
vides a benchmark against which future theoretical re-
sults can be tested. Calculations including two-body hy-
drodynamic interactions do not seem to exhibit the
correct scaling behavior shown by the data [18,20].
Clearly the development of a more fundamental under-
standing of the scaling behavior provides an important
theoretical challenge. Moreover, the transient hydro-
dynamic interactions may depend strongly upon particle
configurations, and therefore may be modified by poten-
tial interactions. Thus studies of these systems may pro-
vide new insight into the nature of hydrodynamic interac-
tions.
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