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We report the observation of toroidal and higher genus vesicles of diacetylenic phospholipids, a class
of polymerizable amphiphiles. When unpolymerized, the vesicles exhibit different toroidal shapes in

quantitative agreement with recent theoretical predictions. When partially polymerized, only a specific

family of shapes has been observed: the Clifford torus or the branch of nonaxisymmetric shapes ob-
tained by its conformal transformations. Assuming that partially polymerized vesicles are permeable on

short time scale, we give a physical explanation of our findings. We also report the results of a variation-
al calculation which approximates the nonaxisymmetric shape problem for finite spontaneous curvature.

PACS numbers: 82.70.—y

When dispersed in an aqueous solution, phospholipid
molecules form giant unilamellar vesicles of typical size
R& I pm. A conceptual framework for the study of
their shapes was set by Canham [I], Helfrich, and others,
who formulated the shape problem as the minimization of
a curvature Hamiltonian under the constraints of con-
stant area and volume. Following the work of Deuling
and Helfrich [2] on the morphology of red blood cells, re-
cent work has focused on vesicles of spherical topology
(genus zero). In these studies, theoretical phase dia-
grams for shapes calculations have been confronted with
experimental observations [3].

In this Letter we report the first observations of fiuid
vesicles of nonzero genus made from a polymerizable
phospholipid and we contrast them with partially poly-
merized systems [4]. The shapes observed are in quanti-
tative agreement with recent theoretical predictions [5-7]
where the constraints select the minimum energy shapes.
Partially polymerizing the membrane, however, has the
rather surprising effect of selecting one generic class of
toroidal shapes. In that case, we have only observed [4]
the so-called Clifford torus or its conformal transforms, a
branch of the Dupin cyclides [4,7,8]. Considering that
partially polymerized vesicles are more permeable than
unpolymerized ones in the early stages of their formation,
we give a heuristic explanation of our findings, showing
that partially polymerized vesicles select the shape with
absolute minimum bending energy available for a toroidal
topology [4,9]. Proceeding further, we include a stability
analysis of the Clifford torus where it is shown that a pos-
itive spontaneous curvature favors nonaxisymmetric solu-
tions akin to the Dupin cyclides. Finally, we derive a
variational ansatz to approximate these nonaxisymmetric
shapes at constant area and volume and show that the ab-
solute cncrgy mln1ITlum ls obta1ncd for ax1syITlmctric
shapes.

The polymcrizablc phospholipids used in our experi-
ments DCz3PC [1,2bis(10, 12-tricosadinoyl)-sn-glycero-
3-phosphocholine] were purchased from Avanti Polar
Lipids as a crystalline powder. A small amount (—10
mg) of the slightly hydrated powder was spread on a
glass plate (Petri dish) to obtain a thin lipid film. Water

was added, at T 50'C (melting temperature, T
43 C [10]), to allow the film to swell. After several

hours, some pl of the solution containing the swollen un-

polymerized lipid were introduced by capillarity in a mi-

crochamber (typical thickness about 100 pm) which was

then sealed and placed in a temperature-controlled oven

on a microscope stage [4]. For the observations an in-

verted phase contrast microscope (Nikon) was used.
Membranes are seen in the focal plane when they are
parallel to the optical axis of the microscope.

Though long tubular fluid vesicles predominated, we

also observed circular toroidal vesicles with reduced
volume t —=6~ ir V/S ~ t cl;lr„q and nonaxisymmetric3/2

tori with v & tel;s„q (see Fig. 1). These shapes can be
obtained by minimizing the curvature energy under the

FIG. 1. Nonaxisymrnetric unpolymerized fluid toroidal vesi-

cle; (a) top view, (b) side view. The bar indicates 10 pm. The
reduced volume v =0.77.
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where ~ (ci+c2) is the mean curvature and cp is the

spontaneous curvature. Being only interested in shapes of
toroidal topology, we have dropped out the constant
Gaussian term. For cp 0, the absolute minimum of (1)
is the so-called Clifford torus or due to the conformal in-

variance of (1) [6,7] its conformal equivalents, the Dupin
cyclides [12l.

Since partially polymerized membranes when heated
back to the fluid state increase their volume to reach
equilibrium, the first equilibrium shape accessible to the
system corresponds to the absolute minimum of (I) with

the smallest reduced volume v: This shape is the Clifford
torus, see Fig. 4(a). However, if the kinetics which

governs the plugging of the pores is sufficiently slow,

thermally induced conformal fluctuations [7l can drive

the hole off center, so that the final (fixed volume) is

locked on a Dupin cyclide with a small eccentricity.
An effect, previously neglected, is the possible induc-

tion of a mean spontaneous curvature co~0 by partial po-
lymerization [4]. In the following, we show that a non-

zero spontaneous curvature does not modify the con-
clusions of the preceding discussion and may also induce
a symmetry-breaking transition to a nonaxisymmetric
torus. For ep&0, Ou-Yang Zhong-can [5] has shown that
the symmetric Clifford torus is still a stationary solution
of the shape problem, but by studying its stability to
shape deformations, we shall see below that for ep & 0 it

is unstable with respect to a shift of the hole [6].
Let us consider azimuthal deformations of the toroi-

dal shape rl=rip[l+a cos(mp)l with rl parametrizing
the toroidal surface R as in Ref. [4] (sinht)p 1 for
the Cliff'ord torus): R [sinhr)cosp, sinhrlsinp, sine]/
(coshrt —cose). The m 0 term corresponds to a breath-
ing mode, but the m 1 component moves the hole off
center. For a permeable membrane, i.e., the relevant lim-
it in the inflation stage, the second variation of the ap-
propriate free energy reads as [13]

a"'(H+ v) —3
rl g yg +rl g (1 —2cpJP)
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When cp 0, the m 1 harmonic is a Goldstone mode
of the curvature Hamiltonian (1), since the bending ener-

gy is a conformal invariant. However, for co&0, this
m 1 mode makes the Clifford torus unstable with

respect to a displacement of the hole [6].
Since the prime eff'ect of the unstable mode is to move

the hole off' center, it is natural to look for stationary
shapes which break the azimuthal symmetry. We shall
approach this problem by a variational ansatz for shapes
with a circular meridian cross section due to Kleman [8].
Coupling this ansatz, which includes arbitrary breathing
and eccentric deformations, to a global rescaling [14] one
can look for the minimal energy shapes at given volume V
and surface S [15]. The results for cp 0 and 1 are
presented in Fig. 4, where the elastic energy is drawn as a
function of the hole eccentricity for various values of the
reduced volume v. For a given reduced volume

v & v„;(eo) =v (I —cpJ2/18)+O(cp),

FIG. 4. Energy E H/2a k, vs eccentricity for the variation-
al ansatz at (a) cp 0 and (b) cp 1. The various curves corre-
spond to different reduced volumes (v/vc) for a given area

2&2+~. (a) Notice that the minimal energy is the same for
all v~ vc. This degeneracy is suppressed when cpaO, see (b).
(b) Notice that the curve corresponding to v =c c has a nonax-
isymmetric minima, but that the absolute minima (fpr free
volume) is still axisymmetric.

the minimum energy is nonaxisymmetric. Thus, as ex-
pected from the stability analysis, for cp& 0 the Clifford
torus (with v =vr) is not an equilibrium shape. If, how-
ever, the volume constraint is relaxed, the vesicle shape
and volume are given by the smallest energy minimum in

Fig. 4, and this corresponds to an axisymmetric torus
with vgpj$(cp) ( vc (when cp & 0).

In conclusion, the toroidal shape resulting from the
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inflation stage of partially polymerized membranes will

be an axisymmetric shape close to the Clifford torus or a
toroidal shape with small eccentricity, due either to con-
formal fluctuations or (if cp) 0) to a decentralization of
the hole at fixed volume (or fixed osmotic pressure). The
previous discussion provides a possible explanation of the
difference between the observed fluid and partially po-
lymerized toroidal vesicles. As an experimental test of
these ideas, it might be interesting to punch a toroidal
fluid vesicle (for example, with antibiotics, some of which

are known to form pores in the membrane) and look for
an evolution to the Clifl'ord torus and conformal fluctua-
tions (if cp =0).

This work was supported in part by the DRET and

PROCOPE. We would like to thank B. Duplantier for
freely sharing his insights as well as P. Nozieres, J. Char-
volin, U. Seifert, M. Wortis, and J. Chalker for useful

discussions.
Note added. —We have recently generalized the obser-

vations reported here to vesicles of higher genus and more
common phospholipids (e.g. , egg lecithin) [16].
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