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We report the observation of toroidal and higher genus vesicles of diacetylenic phospholipids, a class
of polymerizable amphiphiles. When unpolymerized, the vesicles exhibit different toroidal shapes in
quantitative agreement with recent theoretical predictions. When partially polymerized, only a specific
family of shapes has been observed: the Clifford torus or the branch of nonaxisymmetric shapes ob-
tained by its conformal transformations. Assuming that partially polymerized vesicles are permeable on
short time scale, we give a physical explanation of our findings. We also report the results of a variation-
al calculation which approximates the nonaxisymmetric shape problem for finite spontaneous curvature.

PACS numbers: 82.70.—y

When dispersed in an aqueous solution, phospholipid
molecules form giant unilamellar vesicles of typical size
R>1 pum. A conceptual framework for the study of
their shapes was set by Canham [1], Helfrich, and others,
who formulated the shape problem as the minimization of
a curvature Hamiltonian under the constraints of con-
stant area and volume. Following the work of Deuling
and Helfrich [2] on the morphology of red blood cells, re-
cent work has focused on vesicles of spherical topology
(genus zero). In these studies, theoretical phase dia-
grams for shapes calculations have been confronted with
experimental observations [3].

In this Letter we report the first observations of fluid
vesicles of nonzero genus made from a polymerizable
phospholipid and we contrast them with partially poly-
merized systems [4]. The shapes observed are in quanti-
tative agreement with recent theoretical predictions [5-7]
where the constraints select the minimum energy shapes.
Partially polymerizing the membrane, however, has the
rather surprising effect of selecting one generic class of
toroidal shapes. In that case, we have only observed [4]
the so-called Clifford torus or its conformal transforms, a
branch of the Dupin cyclides [4,7,8]. Considering that
partially polymerized vesicles are more permeable than
unpolymerized ones in the early stages of their formation,
we give a heuristic explanation of our findings, showing
that partially polymerized vesicles select the shape with
absolute minimum bending energy available for a toroidal
topology [4,9]. Proceeding further, we include a stability
analysis of the Clifford torus where it is shown that a pos-
itive spontaneous curvature favors nonaxisymmetric solu-
tions akin to the Dupin cyclides. Finally, we derive a
variational ansatz to approximate these nonaxisymmetric
shapes at constant area and volume and show that the ab-
solute energy minimum is obtained for axisymmetric
shapes.

The polymerizable phospholipids used in our experi-
ments DC,3PC  [1,2bis(10,12-tricosadinoyl)-sn-glycero-
3-phosphocholine] were purchased from Avanti Polar
Lipids as a crystalline powder. A small amount (~10
mg) of the slightly hydrated powder was spread on a
glass plate (Petri dish) to obtain a thin lipid film. Water

was added, at T7=50°C (melting temperature, T
=43°C [10]), to allow the film to swell. After several
hours, some ul of the solution containing the swollen un-
polymerized lipid were introduced by capillarity in a mi-
crochamber (typical thickness about 100 zm) which was
then sealed and placed in a temperature-controlled oven
on a microscope stage [4]. For the observations an in-
verted phase contrast microscope (Nikon) was used.
Membranes are seen in the focal plane when they are
parallel to the optical axis of the microscope.

Though long tubular fluid vesicles predominated, we
also observed circular toroidal vesicles with reduced
volume ©v=6VrV/S*?<vcifora and nonaxisymmetric
tori with v > vciifora (see Fig. 1). These shapes can be
obtained by minimizing the curvature energy under the

FIG. 1. Nonaxisymmetric unpolymerized fluid toroidal vesi-
cle; (a) top view, (b) side view. The bar indicates 10 um. The
reduced volume v = 0.77.

2551



VOLUME 68, NUMBER 16

PHYSICAL REVIEW LETTERS

20 APRIL 1992

FIG. 2. Two views of a toroidal unpolymerized fluid vesicle
obtained from the film swelling method at T=50°C; (a) top
view, (b) side view. The bar indicates 10 yum. The reduced
volume v =0.5.

constraints of constant volume V and area S [6]. Howev-
er, it is interesting to notice that the toroidal vesicle of
Fig. 2 is apparently only a local minimum of the energy,
since for this value of v minimization the bending energy
yields sickle-shaped tori [6]. We did not observe the for-
mation of these toroidal vesicles, but we did see tubular
vesicles forming ring-shaped structures. Although, the
final step of fusion of the ends of these tubes has not been
observed, they could present a preliminary stage in the
formation of fluid toroidal vesicles. Vesicles of genus 2
were also observed [Fig. (3)]. There are as yet no shape
calculations for vesicles of this genus to compare our ob-
servations with, but Willmore surfaces of genus 2 are re-
ported in the mathematical literature [9].

Partially polymerized toroidal vesicles were described
previously [4]. The major observational difference with
the tori reported here is the apparent selection of the
toroidal shape which is close to either a Clifford circular
toroid with reduced volume v =v¢ [5], or, less often, to its
conformal transforms, nonaxisymmetric tori known as the
Dupin cyclides [6,7]. As argued below this observational
difference can be attributed to the different mechanisms
of formation of these vesicles.

When unpolymerized, vesicles are obtained by the gen-
tle swelling of a lamellar phase with many defects. As
the lamellas peel off, they may form vesicles whose topol-
ogy is related to the topology of the defects in the lamel-
lar phase, but in any case the vesicles thus obtained are
fluid and their area and volume is constant.
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FIG. 3. An unpolymerized fluid two-holed torus. (a) Top
view; (b) side view—cut through the two holes; and (c) side
view—cut perpendicular to the line joining the two holes. The
bar indicates 10 ym.

Partially polymerized vesicles are obtained by polymer-
ization of the ordered phase of the diacetylenic molecules
at T <T,. This phase is achieved by cooling down an
unpolymerized vesicular solution below T,,. As the mole-
cules order in an Lg phase, the membrane of the vesicle
warps around to form long soda-straw-like structures
[11]. These double-membrane long needles are obtained
after squeezing out the water inside the vesicles. During
that process the membrane is thus pierced at least at one
place. In this solid phase the membrane is first partially
polymerized (the polymerization percentage <40% is
below percolation) and the solution is heated to a temper-
ature T > T,, where the needles inflate to reform flaccid
fluctuating vesicles. This inflation stage, during which
the vesicular volume is unconstrained, lasts a few
minutes and ends when the free monomers have reverted
to the fluid state, allowing the closing of the membrane
pores. The reduced volume v of the vesicle is then fixed.

The following is a plausible explanation of these exper-
imental findings. Since the volume constraint is relaxed
in the early stage of partially polymerized vesicle forma-
tion, the system can settle at the absolute minimum of the
bending energy

H=4k [ ci+er—co)?as, M
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where ¥ (c;+c3) is the mean curvature and cg is the
spontaneous curvature. Being only interested in shapes of
toroidal topology, we have dropped out the constant
Gaussian term. For co=0, the absolute minimum of (1)
is the so-called Clifford torus or due to the conformal in-
variance of (1) [6,7] its conformal equivalents, the Dupin
cyclides [12].

Since partially polymerized membranes when heated
back to the fluid state increase their volume to reach
equilibrium, the first equilibrium shape accessible to the
system corresponds to the absolute minimum of (1) with
the smallest reduced volume v: This shape is the Clifford
torus, see Fig. 4(a). However, if the kinetics which

Eccentricity

FIG. 4. Energy E =H/2n%k, vs eccentricity for the variation-
al ansatz at (a) co=0 and (b) co=1. The various curves corre-
spond to different reduced volumes (v/vc) for a given area
S =2v272 (a) Notice that the minimal energy is the same for
all v=ve. This degeneracy is suppressed when co=0, see (b).
(b) Notice that the curve corresponding to v =vc¢ has a nonax-
isymmetric minima, but that the absolute minima (for free
volume) is still axisymmetric.

governs the plugging of the pores is sufficiently slow,
thermally induced conformal fluctuations [7] can drive
the hole off center, so that the final (fixed volume) is
locked on a Dupin cyclide with a small eccentricity.

An effect, previously neglected, is the possible induc-
tion of a mean spontaneous curvature co#=0 by partial po-
lymerization [4]. In the following, we show that a non-
zero spontaneous curvature does not modify the con-
clusions of the preceding discussion and may also induce
a symmetry-breaking transition to a nonaxisymmetric
torus. For co=0, Ou-Yang Zhong-can [5] has shown that
the symmetric Clifford torus is still a stationary solution
of the shape problem, but by studying its stability to
shape deformations, we shall see below that for co> 0 it
is unstable with respect to a shift of the hole [6].

Let us consider azimuthal deformations of the toroi-
dal shape n=mnoll +a, cos(m¢)] with n parametrizing
the toroidal surface R as in Ref. [4] (sinhno=1 for
the Clifford torus): R =I[sinhncosg, sinhnsing, sin6l/
(coshn —cos@). The m =0 term corresponds to a breath-
ing mode, but the m =1 component moves the hole off
center. For a permeable membrane, i.e., the relevant lim-
it in the inflation stage, the second variation of the ap-
propriate free energy reads as [13]

@
< ;Hz-,:‘p_y) = — 3 néaim?+ngai(1 —2coV2)
K, s

+ + ndaim*. )

When ¢ =0, the m =1 harmonic is a Goldstone mode
of the curvature Hamiltonian (1), since the bending ener-
gy is a conformal invariant. However, for ¢o> 0, this
m=1 mode makes the Clifford torus unstable with
respect to a displacement of the hole [6].

Since the prime effect of the unstable mode is to move
the hole off center, it is natural to look for stationary
shapes which break the azimuthal symmetry. We shall
approach this problem by a variational ansatz for shapes
with a circular meridian cross section due to Kléman [8].
Coupling this ansatz, which includes arbitrary breathing
and eccentric deformations, to a global rescaling [14] one
can look for the minimal energy shapes at given volume V
and surface S [15]. The results for co=0 and 1 are
presented in Fig. 4, where the elastic energy is drawn as a
function of the hole eccentricity for various values of the
reduced volume v. For a given reduced volume

0> l’cri((Co) =l’c(l —’Co\/i/IS) +0(C(%) ,

the minimum energy is nonaxisymmetric. Thus, as ex-
pected from the stability analysis, for co> 0 the Clifford
torus (with v =v¢) is not an equilibrium shape. If, how-
ever, the volume constraint is relaxed, the vesicle shape
and volume are given by the smallest energy minimum in
Fig. 4, and this corresponds to an axisymmetric torus
with veric(co) < ve (when ¢o> 0).

In conclusion, the toroidal shape resulting from the
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inflation stage of partially polymerized membranes will
be an axisymmetric shape close to the Clifford torus or a
toroidal shape with small eccentricity, due either to con-
formal fluctuations or (if co> 0) to a decentralization of
the hole at fixed volume (or fixed osmotic pressure). The
previous discussion provides a possible explanation of the
difference between the observed fluid and partially po-
lymerized toroidal vesicles. As an experimental test of
these ideas, it might be interesting to punch a toroidal
fluid vesicle (for example, with antibiotics, some of which
are known to form pores in the membrane) and look for
an evolution to the Clifford torus and conformal fluctua-
tions (if co=0).

This work was supported in part by the DRET and
PROCOPE. We would like to thank B. Duplantier for
freely sharing his insights as well as P. Nozieres, J. Char-
volin, U. Seifert, M. Wortis, and J. Chalker for useful
discussions.

Note added.— We have recently generalized the obser-
vations reported here to vesicles of higher genus and more
common phospholipids (e.g., egg lecithin) [16].
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FIG. 1. Nonaxisymmetric unpolymerized fluid toroidal vesi-
cle; (a) top view, (b) side view. The bar indicates 10 um. The
reduced volume ¢ = 0.77.



FI1G. 2. Two views of a toroidal unpolymerized fluid vesicle
obtained from the film swelling method at T=50°C; (a) top
view, (b) side view. The bar indicates 10 um. The reduced
volume v = 0.5.



FIG. 3. An unpolymerized fluid two-holed torus. (a) Top
view; (b) side view—cut through the two holes; and (c) side
view—cut perpendicular to the line joining the two holes. The
bar indicates 10 ym.



