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Particle Dynamics in a Large-Amplitude Wave Packet

David L. Bruhwiler and John R. Cary
"'

Department of Astrophysical, Planetary and Atmospheric SciencesUni, versity of Colorado, Boulder, Colorado 80309 039I-
(Received 22 May 1991)

A new adiabatic theory permits the understanding of one-dimensional dynamics of particles interact-
ing with a large-amplitude wave packet for bounce time short compared with the transit time. This
theory diAers from previous ones in that the Hamiltonian varies slowly not with the time, but with the
coordinate. The resulting adiabatic invariant is not equal, even in lowest order, to the usual action. This
theory predicts the basic features of the interaction observed in previous numerical studies.
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The interaction of particles with wave packets is cen-
tral to plasma and accelerator physics. Nearly resonant
particles, i.e., those with velocity close to the phase veloci-

ty of the wave, interact strongly with the wave. The large
energy exchange between the wave packets and their as-
sociated resonant particles is important to plasma tur-
bulence theory and crucial for charged-particle accelera-
tion in slow-wave structures. At low amplitudes this in-
teraction gives rise to the phenomena of Landau damping
and quasilinear diffusion (cf. Ref. [1], Secs. 6.7 and
10.2), which can be analyzed perturbatively, assuming
that the trajectories are only weakly modified from the
straight unperturbed orbits. But at large amplitudes only
numerical analyses, such as that of Ref. [2], are avail-
able. (A review of the literature is provided in Chap. 6 of
Ref. [3].)

In this Letter we analyze particles interacting with
large-amplitude wave packets, in which the bounce time
is short compared with the time for a particle to cross the
packet. For this problem, an adiabatic approximation
should apply. However, as the Harniltonian varies slowly
not with time, but with the coordinate, the usual adiabat-
ic theory does not apply, and the adiabatic invariant is
not the familiar action, the phase-space area fpdq en-
closed by a contour of constant Hamiltonian at constant
time. This result runs counter to the physical intuition
firmly established in the plasma and accelerator physics
communities.

We progress by reversing the roles of space and time,
permissible in Hamiltonian theory. In the resulting sys-
tem, the new coordinate is the rapidly varying phase,

+=mt —kq, while the new time is the old coordinate q.
Here the familiar adiabatic analysis applies, so the adia-
batic invariant is the area in the phase plane of y and its
conjugate, enclosed by a contour of constant new Hamil-
tonian at constant new time. The analysis, then, consists
largely of finding the new conjugate momentum and the
new Hamiltonian.

This method applies to a wide variety of physical sys-
tems, such as the dynamics of electrons trapping and de-
trapping in strong Langmuir wave packets [2] or the pon-
deromotive potential of a free-electron laser [4], or ions
trapping in a radio-frequency quadrupole [5]. Suitably
modified, this method may be applied to electron dynam-
ics in plasma beat-wave acceleration [6] or microwave
plasma heating [7]. Outside the realm of charged-
particle dynamics is the example of the evolution of
high-frequency internal waves interacting with large-
amplitude near-inertial wave packets in the ocean [8].

A specific physical situation is that of a large-am-
plitude wave packet in a plasma. Approaching the wave
envelope, plasma electrons become trapped and are then
carried along at the wave's phase velocity. The electrons
detrap upon reaching the other side of the envelope where
the wave amplitude decreases. The Hamiltonian for this
system is

H(q, p, t) =p'/ m2+eN

=p'/2m+eA(q/L)cos(kq —tot) .

The amplitude is assumed to have the form A(q/L)
=Aaf(q/L), where f is a function of unit peak and unit
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r' = ~ [2mE —2meA(q/L)cos(kq —ait)) ' (2)

has two branches: Where takes the plus sign, the new

time q increases along trajectories, and where tp takes the
minus sign, q decreases along trajectories.

The Hamiltonian (2) has its new temporal (q) varia-
tion not only in the slowly varying amplitude, but also in

the rapidly varying phase. This rapid variation with

respect to the new time q is eliminated by a canonical
transformation making the phase p=cot —kq the new

coordinate. The generating function F(t, K,q) = (K
+mto/2k ')(tot —kq) —m-aiq/2k, of the old coordinate t

and the new momentum K, eff'ects this transformation.
The terms linear in the new momentum K ensure that the
new coordinate conjugate to K is the phase p=BF/BK
The remaining terms simply add constants to the new

width, so that Ao is the peak value of the potential, and I
is the characteristic length over which the wave ampli-
tude changes. This Hamiltonian has two dimensionless
parameters. The first, e—= 1/kL, is small for a wave pack-
et, since its inverse is the number of wavelengths in the
wave packet. The second quantity, a=k-'eAO/me@-', is the
ratio of the peak potential energy to the kinetic energy
(in the stationary wave-packet frame chosen here) of a
resonant particle.

Except for small O(s) differences, this Hamiltonian in-

cludes that studied by Fuchs, Krapchev, Ram, and Hers

[2] (hereafter referred to as FKRB). The O(s) dif-
ferences arise because they define the force to have the
form of a slowly modulated sine. Our choosing the po-
tential to have the form of a slowly modulated cosine
adds to the f'orce a small O(s) sine term FK. RB also
chose the wave packet to have a specific Gaussian form.

Particles oscillate characteristically at the bounce fre-
quency, bio=—k(eAo/m) -'. The time for a resonant parti-
cle to cross the wave packet is kL/co. Hence, the number
of bounce oscillations that a resonant particle makes in

crossing the wave packet is given by v=aiakL/ai =a' '/s'.

For small v no bounce oscillations are completed. Here,
as expected, FKRB found that quasilinear theory de-
scribes the dynamics well.

We analyze the large-v regime, where adiabatic anal-
ysis is indicated, as the particle executes many bounce os-
cillations in crossing the wave packet. For adiabatic
theory the Hamiltonian H(q, p, ct) must be a slow func-
tion of time. This is accomplished by using the quantities
t and E, where E =H is the value of the Hamiltonian, as
the phase-space coordinates, since these quantities form
[9] a canonical pair evolving according to Hamilton's
equations with q acting as the time, when the Hamiltoni-
an is taken to be the momentum as a function of the coor-
dinate, time, and energy. That is,

dt BP
d

dE BP
dq BE dq Bt

where p(q, E, )tis found by solving H(q, p, t) =E for the
momentum. For the system (1)„the new Hamiltonian,

momentum and Hamiltonian that will aid in their inter-
pretation. The standard relation, E =BF/Bt, for the old
momentum gives K =E/tu —mrna/2k . The new Hamil-
tonlan,

P =II+ F
Bq

= —kK — ~ 2mcoK+
fH CO me@

k

7

—2meA (q /L )c os(p )

Thus, p~ is the momentum in the wave frame, where the
phase velocity vanishes, and E~ is the energy in this
frame. Hence, integrating at constant P is identical to in-

tegrating at constant wave-frame energy. Last, we note
that the new momentum, K =E~/to+ p~/k, essentially the
wave-packet-frame energy, is a linear combination of the
energy and momentum in the wave frame.

These facts allow us to evaluate the adiabatic invariant,
J =fdy(E~/Oi+p~/k)/2tr, which must be done separate-
ly for the trapped particles (inside the separatrix) and the
passing particles (outside). The separatrix is the contour
E~=eA or P = —ekA/to of the new Hamiltonian in the
K-p plane. The first integral is (E~/2nco) fdp, since E~ is

held constant in the integration. This piece vanishes for
trapped particles, which complete a circuit in the phase.
This piece is E~/co for passing particles, for which p in-

creases by 2z in one period. The second term gives the
usual action integral J =/dip~/2trk for a wave of slowly
varying amplitude. This action integral can be expressed
in terms of complete elliptic integrals (see, e.g. , Ref. [10)
or p. 65 of Ref. [3]). So 1'or passing particles,

Jp =E~/co+ p~/k, (3)

where p~= fp~dp/2—tr, the wave-frame action integral, is

the average momentum on a contour of constant wave-
frame energy at fixed amplitude, given our choice in in-

tegrating in the positive-g direction for passing particles
moving slower or faster than the wave. For trapped par-

is in the form required for adiabatic theory: It varies rap-
idly with only the new coordinate p, and it varies slowly
with the new time q. Thus, the adiabatic invariant for
the system is given by the loop integral, J=fK—dp/2tr, in

the (K,p) phase plane at constant new Hamiltonian P
and new time q.

To aid the calculation of J, we interpret the trans-
formed quantities. We first note that to integrate in p at
constant q is to integrate over the wave phase holding the
wave amplitude fixed. This already differs from standard
adiabatic theory, where the integration over the coordi-
nate at fixed time would imply variation, though O(s), of
the amplitude in the adiabatic invariant integral. Second,
we note that P = —kE~/to, where

E~=p~/2m—+e& and p~ p mai/k —.
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ticles the adiabatic invariant is an integral,

JT =2p,/k =—(2/k )„p,dp/2z,

between limits (yl, v~v) of the bounce motion. For
trapped particles, p~ is not precisely an average momen-

tum because (1) the range of the trapped phase is not 2x,
and (2) the integration is effectively of ~p~( because on

the return path, when p~ is negative, so is dp.
The trajectories stay on contours of J, which are plot-

ted in Fig. l in the plane formed by the average wave-

frame momentum p~ and the coordinate. The arrows on

these contours indicate the direction of motion. The
direction on the passing contours is determined at large

distance, where the wave amplitude vanishes, and so the

velocity is p~/m+ro/k. Trapped particles move to the

right (with the phase) at constant p~, the trapped-particle
adiabatic invariant. The upper and lower branches of the

separatrix F~=eA are the two curves forming an outline

of what resembles human lips. On these curves the aver-

age wave-1'rame momentum is pv, „=+'(4/z)(emA) '

The lower lip is shaded to indicate that this is an unphysi-

cal region: For trapped particles the quantity p~ is posi-

tive by definition.
To illustrate the interpretation of this diagram we dis-

cuss the incoming trajectories c and e, which trap at the

same amplitude: one at the resonant velocity minus the
resonance width; the other at the resonant velocity plus

the resonance width. Upon encountering the separatrix,
the two classes of trajectories combine into a single

trapped c)ass. The trapped trajectories then travel

through the wave packet. The trajectories detrap into the

passing contours (now d and f) at the other end of the
wave packet where the amplitude decreases. This is also
what occurs when the amplitude varies only temporally.

Ho~ever, our analysis also points to a new type of tra-
jectory, such as that incoming on the contour labeled a.
The slowing down (decrease of p~) of this trajectory upon

entering the wave packet is a manifestation of the pon-

deromotive force, which pushes particles away from re-

gions of large oscillating field. lf the phase is such that
the trajectory becomes trapped, it encounters the separa-
trix again at the other side of the wave packet (where the

amplitude decreases), and the trajectory leaves via con-

tour b. The other possibility for an incoming trajectory
on contour a is to encircle the trapped region and be

reflected. This corresponds to jumping to the lower

branch of the separatrix and exiting the region of the
wave packet along contour h. This type of trajectory is

present only when a) 2/n.
The contour (b or h in this case) the trajectory ulti-

mately leaves on is determined by the initial phase of the

trajectory. The initial phase also determines a small

O(a) change of the adiabatic invariant. This change
would cause a phase-distributed set of trajectories to have

an O(a) spread of values of the adiabatic invariant

around that predicted by this lowest-order theory. Such
separatrix crossing theory [11,12] has been applied to this

situation elsewhere [3].
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FIG. l. Contours of the adiabatic invariant. The two curves
resembling lips separate the passing particles (outside) from the

trapped particles (inside). Typical trajectories are represented

by curves with arrows. Heavier curves separate the diAerent

types of motion. For example, the heavier curve separating
cur~e e f'rom curve g is the boundary between trajectories (like
e) that become trapped from those (like g) that reflect before
encountering the separatrix.
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FlG. 2. Analytically calculated final momentum p~ after one

interaction with the wave packet as a function of the initial

momentum p; for a=2.
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Our analysis permits explicit calculation of the possible
final values of momentum for a given value of incoming
momentum. We illustrate this calculation for trajectory
a. Far from the wave packet, a positive-p~ particle has
initial momentum p; and, thus, adiabatic invariant

Ji =pt/2mru —men/2k . This value of the adiabatic in-

variant is conserved up to the separatrix, which is encoun-
tered (to lowest order in the adiabaticity parameter)
when J; equals the separatrix value (4/trk ) (emA )
+eA/ru of the adiabatic invariant for a positive-pv, parti-
cle. Therefore, the amplitude of encounter is given by
(emA) I =[m raJ;+4(mto/trk)'-] I- —2mtu/trk. If the
trajectory becomes trapped, it eventually detraps with

positive p~ and ultimately has final momentum equal to
its initial momentum, as can be seen in Fig. 1. For a
reflecting trajectory, the value of the adiabatic invariant
changes to that, Jl = —(4/trk ) (emA ) ' -+ eA/ru, of a
negative-p~ particle at the separatrix. The trajectory
then leaves the wave-packet region preserving the adia-
batic invariant, so that far from the wave packet its
momentum satisfies JI =pj/2mru —mru/2k -'. This chain
of equalities gives the final momentum,
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FlG. 3. Numerical results adapted from Ref. [2] for the linal

momentum as a function of the initial momentum.

pl = —[p; +32(mao/ktr) '(I —Il + (tr /8) [(kp /men)-' —I ]] 'I'-)] 'I'-,

on contour h as a function of the initial momentum on

contour a.
The collection of such considerations yields Fig. 2, a

plot of the possible final momenta as a function of the ini-

tial momenta. Dashed curves are used when the associat-
ed trajectories do not intersect the separatrix, and so the
adiabatic approximation does not break down. To illus-

trate the validity of our model, we compare Fig. 2 with

Fig. 3, which shows the scattering results (pl vs p; for a
distribution of initial phases) of Ref. [2] previously ob
lained by purely numerical means Our results . accurate-
ly provide the skeleton of the scatter plot. The spread
around this skeleton is due to separatrix-crossing eA'ects

noted earlier. When there is no interaction with the
separatrix, the skeleton is precise.

Our analysis, therefore, provides a basic analytic un-

derstanding of the interaction of particle trajectories in a

spatially adiabatic wave. We have found a strong devia-
tion from the temporally adiabatic case when the dimen-
sionless amplitude is sufficiently large. These results are
clearly important for the understanding of plasma tur-
bulence consisting of large-amplitude wave packets and
for the trapping and detrapping of particles in spatially
varying accelerating structures.
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