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Hall Voltage Sign Reversal in Thin Superconducting Films
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A novel approach to the superconducting Hall effect is developed, based on the opposing drift of the

thermally excited quasiparticles. These collide quasielastically with the hydrodynamic superfluid veloci-

ty field circulating far outside the core of a vortex, thereby transferring momentum to the latter. The

predicted Hall angle, by BCS theory, is of the order of k&T, divided by the Fermi energy, has sign oppo-

site to that in the normal state, because of the backflow, and disappears at low temperature.

PACS numbers: 74.20.—z

There is considerable experimental evidence [1] that
the Hall voltage reverses its direction when a thin film in

a weak perpendicular field is cooled below its supercon-
ducting transition temperature. Under these conditions,
the magnetic screening corning from the self-field of a
vortex can be neglected and the vortices can be treated
individually as decoupled entities. As noted by Josephson
[2], and discussed in detail by Hagen et al. [3], the
motion of the individual vortices, in response to the forces
acting on them, sets up the Hall voltage that is observed.
In this Letter we present a way of thinking about these
forces that leads to a straightforward and simple physical
explanation of the Hall voltage sign reversal.

Essential to our approach is the Landau picture of the
reduction of the effective superfluid mass density in liquid
He I I resulting from the anisotropic distribution of
thermally excited phonons and rotons. The analogous
two-fluid picture advanced by Bardeen [4] for a supercon-
ductor is to regard P, the momentum density in a super-
conductor, as composed, similarly as in He tt, of two dis-
tinct components. To set the stage for our discussion of
the Hall effect, it is useful to review briefly Bardeen's
two-fluid model. The "superfluid" contribution to P is

P, =pv„where v, and p are the superlluid velocity (pro-
portional to the gradient of the Cooper pair phase) and
the total mass density of the charge carriers, respectively.

By Galilean covariance Ep, the energy of a thermally ex-
cited quasiparticle of momentum p, is shifted by v, p,
causing the equilibrium occupation probability to change
by

2 2' aN(0) pF de v, , —
P gE

(2)

Af= v p8E
Here f=(1+exppE) ' is the Fermi function and

kttT=p ' is Boltzmann's constant times the tempera-
ture. Introducing N(0), the density of states, and taking
the angular average over the Fermi surface, we project p,
of magnitude p =pF, onto the direction of v, . This yields,
for the normal fluid contribution to P,

P„=—p„v, =2N(0) de„((v, p)p).„„,a

where ep
= ~ (E„—5 )' is the normal-state quasiparti-

cle energy and h, is the BCS energy gap. This equation

defines p„, the effective mass density of the normal fluid.

Limiting the integration over the interval h, ~ E & ~ to

one branch of the quasiparticle spectrum adds a factor of
2 to Eq. (2) and yields [5], describing the backf?ow,

p„= — N(0) pF—
3 4 Q

dE--
(E 2 g2) }/2 QE

P =P, +P„=(p—p, )v, =p.,v,, (4)

and the current density J =(q/m)P =(q/m)p, v„where
q/m is the charge-to-mass ratio for the charge carriers.

For what follows, it is important to appreciate the fact
that p, =p —p„ is a composite property, with its separate

components, p and p„, possessing their own physical reali-

ties. (In this respect, the Ginzburg-Landau theory is

somewhat misleading. )
Continuing with Bardeen's two-fluid picture, we

proceed now to study the Hall effect by calculating the

momentum transfer to an idealized zero-core vortex

which, for the moment, is regarded as pinned at the ori-

gin. As with the momentum density in Eq. (4), the

momentum transfer has two distinct components: (I) that

from the condensate of the Cooper pairs and (2) that

from the backflowing gas of quasiparticle excitations.
Considering the superfluid contribution first, it is con-

venient to introduce a right-handed coordinate system

with unit vectors i and j in the plane of the film and i
normal to it. The weak magnetic field in the z direction

causes the film to set up the vortex with the local

superlluid velocity field u(r) specified by the quantized

circulation vector i =tcz= ~ (tc~z, for positive or nega-

tive charge carriers, respectively. The superposed uni-

form momentum density field is p times the superfluid ve-

locity v, =v,„x= ~ ~t, ~x. Following Nozieres and Vinen

[6] and Hillel [7], we compute the force acting on the

vortex by considering its hydrodynamic interaction with

the superposed momentum density field pv(r) =pv,
+pu(r), where u(r) = tcp/2trr The unit vec.tor p is in the

direction of increasing azimuthal angle &=tan (y/&).
—

I

Adding together the two, physically quite diferent corn

ponents yields the total momentum density
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The radial distance from the vortex is r =(x +y )Z Z i/2

The x-y off-diagonal element of the stress tensor, which

describes the rate of flow of y momentum across an ele-
ment of area normal to the x axis, is pv„v~. The total
flow per unit vortex length across a plane at x =/ is there-
fore

H =E„+p. v(r) =E„+pp v(r) =const, (6)
where energy conservation has been imposed along the
trajectory. By the straight-line approximation, the unit
vector p=p/p is a constant, which, for the moment, we
take to be in the x-y plane. The force exerted on the

,' p—tv,.= —,
'

pltrllv, l, (5)

a positive definite result (for the given geometry), in-

dependent of the sign of the charge carriers. An equal
and opposite flow of y momentum takes place across the
plane x —l. By momentum conservation, the recoil is

F, —plN. llv, ly, the Magnus force that is familiar from
irrotational potential flow in classical hydrodynamics. It
is worth noting that the Lorentz force does not play any
role in this derivation.

In Eq. (4), the total net momentum density was ob-
tained only after including the individual momenta of all
of the quasiparticles. Similarly, for the Hall effect, in or-
der to find the net force on the vortex, it is necessary to
add to F, the recoil force F„=F„„x+F„»yresulting from
the interaction with the quasiparticles passing by the vor-
tex. The same physical mechanism generates both of the
Cartesian components of F„. This unified approach tests
the accuracy of our method of calculation of F„„,a kind
of drag force which is the new result in this paper, by, at
the same time, producing a result for F„», the transverse
component, that is likely to be granted general accep-
tance. In fact, what we are about to derive, namely,

F„» p„lx'llv, l, will not come as any surprise. Added to
F„it reduces the net Magnus force to

Fbt» =F»+F, = —(p —p., )lallv, l
= —

p,, l, trllv, l,
as expected. In spite of the noncontroversial nature of
this outcome, we, nevertheless, present here a derivation
of it. The purpose of this excursion is to prepare the
grounds for a similar computation of the longitudinal
component, F„„.

Instead of representing a quasiparticle of momentum p
by a plane wave, we use a straight-line trajectory. This
quasiclassical approximation is justified by the fact that
the velocity field of the vortex u(r) reaches out to dis-
tances r that are orders of magnitude greater than the de
Broglie wavelength. It is the same approximation used by
Lifschitz and Pitaevskii [8] and by Sonin [8] in their
pioneering work on the scattering of rotons by a vortex in
superfluid He. Galilean covariance requires the local
quasiparticle spectrum, at any point along the trajectory,
to be shifted by p- v, leading to the Hamiltonian

quasiparticle is dp/dt = V—H = —pV[p v(r)]. The ap-

plication of this formula to the computation of the net

momentum transfer from passing by the vortex is greatly

simplified by imagining an infinite family of parallel tra-

jectories, all with the same initial momentum p; and with

a continuous distribution of impact parameters. With all

of the x-y plane filled in this way, Eq. (6) establishes a

functional relationship, at any arbitrary point in the

plane, between the coordinate r and the scalar field p. the

magnitude of the momentum D.ifferentiating Eq. (6)
consequently yields

pV[p v(r)]+ VVp =0, (7)

where the quasiparticle velocity is V=dE„/d„+p v(r).
Making use of Eq. (7) in the preceding force equation,
and dividing by the velocity, gives for the momentum

transfer per unit path length traversed,

d dtd I d e=Vp =V(p —pr ) (8)
ds ds dt V dt

a generalization of an identity [9] that has been derived

for the interaction of rotons with a vortex in superfluid

He. The asterisk indicates a slight shift of the Fermi ve-

locity, of O(v,, ).
Summing the momentum transfer over the impact-

parameter interval b p ~ b ~ b p and interchanging the
order of integration in the plane yields (see Fig. 2 and ac-
companying text of Ref. [9])

I+bp I+ho leoo Q(p —pP )
b

p»'(b)db=
b dy dx

„dx[(p —pP) lb, (p pF ) I b]—— —

We replace pp by p; and choose bo large enough that

p —p; is very small everywhere along the trajectories

y b ~ha, which permits us to write Eq. (6) in the
difl'erential form V;(p —p;)+p; v(r) =0, or

v(r) p; v„p; u„(r)p; v,„p;
p pi

The constant last term drops out from the previous equa-
tion, leaving, in the limit bo

tu oo p. +OO

p,"(b)db = '
lim dx(u„lb, —u„l —b, )

i 0

(~dl u=-pi 2 &pi

V; ' V;

To correctly describe the anomalous holelike branch
(p; (pr*) as well as the normal quasiparticle branch
(p;) pF*), replace V; by its absolute value. (This takes
the reversal of the x integration into account. ) For arbi-
trary orientation of p, p; is to be replaced by p„. The ve-
locity lV;l cancels when multiplying by the differential
flux 2N(0) l V; le der. The ensuing phase-space integra-
tion, except for the factor a, is identical to the total
quasiparticle momentum density of Eq. (2).

The outcome of the computation is that the y corn-
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ponent of the total force per unit length exerted by the
quasiparticles on the vortex is F„,, = —xP„,=p„a.v„,
which, added to F„gives for the net Magnus force

F~ =F. +F y= (p p. )«'. y= p. 1&Iiv ly,

as was to be demonstrated, thereby confirming the relia-
bility of the quasiclassical method of calculating.

We now turn to the backflow drag force, F„. This re-
sults from the shift exerted by the vortex field on the
quasiparticle energies. By local Galilean covariance, the
shift is proportional to psinO, the magnitude of the pro-
jection of p onto the x-y plane. If the maximum shift
along the trajectory, for a given impact parameter b, is
less than the amount by which the initial quasiparticle
energy exceeds the gap energy, then the velocity will be
nonvanishing throughout, and the trajectory will be unin-
terrupted and practically undeflected. The requirement
for no Andreev reflection is expressed by the inequality

(u p)...=l~lp»nO/2~lbl (H, ,
—&, (9)

where Hp, =E„,+(p; pF)p; v—, represents the initial
quasiparticle energy [the overbar indicates that the con-
stant pF(p; v, ) has been subtracted from Eq. (6)]. On
the other hand, if this inequality is violated, Andreev
reflection will occur. Passing through the minimum in

the spectrum, at p =pF* (slightly shifted from pF), the lo-

cal value of p goes to the final value of pf on the other
branch, which reverses the velocity. This causes the
charge carrier to give up an amount of x momentum
equal to (p; —pf)p; x, and to return on essentially the
same straight-line trajectory along which it initially en-
tered the vortex field. The range of impact parameter for
which Andreev reflection occurs is given by

0~ Ibl ~ bp —= ItrlpF*sinO/2tr(Hp, —h) . (io)

The Andreev reflection establishes a one-to-one mapping
between the quasiparticle momenta p; =p and pf =p' on
the normal and anomalous branches of the spectrum, re-
spectively. By energy conservation, H~ =H~, from which
it follows that bz =b&. While the reflection p p'
transfers x momentum of (p —p')p x, the reverse
reflection, p' p, transfers the negative of this. The net
transfer is determined by the difference in the initial pop-
ulations and is proportional to

(p —p') p. x(Af p afp ) = (p —p')—'p. xp v,

2 B=(p —p') sin Ocos y v, „.
BE

(i i)
The O(v, ) deviation of pF from pF can now be neglected.
The number of such pairs of quasiparticle reflections in

the momentum interval dp is proportional to

2N(0)bpdep =2N(0)bp vFdp

=2N(0)bp (dp/IdHpl) ldHpl,

where vF is the Fermi velocity. For the flux, we multiply
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16N (0)
pFka Tl Klg

15xvF gT
4

I I

a

5z t.'F kg T

(i 2)
where the final form comes from the degenerate free fer-
mion gas formula N(0)pF/vF =3p/4eF, eF being the Fer-
mi energy. The angle average is (sin Ocos2&) =

i& . The
scaling function,

f OO d 1du(u+y)4 ) du e"+] + In ( I +e '),2

e'+ 1

g(y) =—

rises to a maximum value of somewhat less than 1 in the
vicinity of y =0.9, and falls, for y» I, as g(y)-(2y
+1)e '. The resultant force on the vortex F =F~
+F„„x is tilted in the x direction (direction of current
flow) relative to the Magnus force by the angle P, where

tanP =—
FMp

4 p kaT=+ g5z P, eF kgT
(i4)

with the ~ sign referring to positive and negative charge
carriers, respectively. Nozieres and Vinen [6] have pro-

posed a picture of the Hall effect at T=O that involves a
force generated within the vortex core and proportional
to —v, . It is, thus, similar in form to our quasiparticle
drag force —Dv„which, however, is of a quite different

physical nature, depending as it does on the interaction of
thermally excited quasiparticles outside the core. The
work of Bardeen and Stephen [10] is similarly limited to
processes occurring inside the core, which is also true of a
recent effort [11] to account for the Hall voltage sign re-
versal. The present work serves to support the observa-
tion by Hagen et al. [3] that a Nozieres-Vinen-type force
of the form —Dv, might provide a phenomenological ex-
planation of the Hall voltage sign reversal.

Hagen et al [I] have presented . a detailed phenomeno-

logical study of the additional forces that may act on a

moving vortex, that are linear in its velocity v, If there
is a transverse component, the resultant velocity-depen-
dent force will be tilted by an angle y relative to the
direction of v, Steady-state equilibrium then requires v, ,

to be tilted by the angle P —) relative to the Magnus

by the component of the velocity in the x-y plane,
sinOldHp/d„l, causing the derivative to disappear from
the calculation. The resulting product, 2N(0)vibp
&sinO(dHpl, is invariant under the mapping p p,
which permits the replacement of Hp=Hp' by Fp ~ Corre-
spondingly, we replace (p —p') by

4e„'/v ' =4(E ' A—')/vF' = (E„—A) (E„+h) 4/v

The first factor of this will cancel with the denominator
of bp Sub. stituting from Eq. (10) and collecting factors
yields the quasiparticle drag force of the form F„,
= —Dv„with the drag coefficient

D = — pF I
a'I(sin Ocos p)„.„s„dE(E+ d )

4N(O)
EVF
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force. The Hall angle is consequently a=P —
y with

tana = (tanP —tang)/(I +tanP tan y), equivalent to Eq.
(4) of Ref. [I]. In the limit v, 0, corresponding to very
small current, and consequently very weak driving forces
(Magnus and backflow drag), it follows also that v, . 0.
The Hall angle, being determined by the direction of v,„
does not vanish in this limit. However, when v, , 0, any
forces proportional to v, , become negligible in comparison
to any residual static pinning forces, no matter how small.
Vortex motion will then only occur discontinuously by
jumps, or hops, that result from random thermal excita-
tion up and over the potential barriers between pinning
sites. In this regime, it is natural to assume that the pin-

ning forces are of purely thermodynamic origin, insensi-
tive to the sign of x. The hops would consequently be, on

the average, in the direction of FM +F„xx. On this as-
sumption, we can set y=0 and equate P =a in Eq. (14).
In general, the latter is associated with v, , in terms of the
electric field [2,3]:

E
tana =

Ex

&'1 x Fnx

FMy

D D= +.
p, a. p, fxf

(IS)
Because D is a positive deftnite drag coefficient, on gen-
eral physical grounds tana is opposite in sign to that in

the normal state, regardless of the sign of the charge car-
riers. (A change of carrier sign changes a. and, thus, a,
below the transition. At the same time, the normal-state
value of a changes sign, staying opposite in sign to that of
a in the superconducting state. ) The point of this paper
has been not simply to make this general, and, we believe,
compelling qualitative intuitive argument for the sign re-
versal, but, in addition, to bolster it with the concrete, al-
beit idealized, computational result shown in Eq. (12).

In summary, we have demonstrated that the hydro-
dynamic interaction of the preferentially backward-
rnoving entropy-rich gas of quasiparticles with the outer
reaches of the vortex velocity field produces some
momentum transfer, by Andreev reflection, which can be
regarded as a special type of quasielastic scattering. The
resulting drag force yields a Hall angle opposite in sign to
that in the normal state. The magnitude, kttT, /4eF, com-
pares favorably for the high-T, cuprate superconductors
[12]. For these superconductors, the ratio of mean free
path to correlation length (and, thus, core radius) is such
as to render the application of our idealized theory not to-
tally unreasonable. It needs emphasizing that the mecha-
nism of the backflow drag force advanced in this Letter
does not require any interaction with the vortex core. All
of the eA'ect comes from the hydrodynamic coupling with
the circulating superfluid. It remains a task for the fu-
ture to carry out a more realistic computation of the drag

coefficient by studying the interactions of the quasiparti-
cles with a vortex of nonvanishing core radius [13], as
well as testing the validity of the tacitly assumed adiabat-
ic adjustment of the quasiparticles to the local superfluid

velocity.
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