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Landauer Formula for the Current through an Interacting Electron Region
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A Landauer formula for the current through a region of interacting electrons is derived using the
nonequilibrium Keldysh formalism. The case of proportionate coupling to the left and right leads, where
the formula takes an especially simple form, is studied in more detail. Two particular examples where
interactions give rise to novel effects in the current are discussed: In the Kondo regime, an enhanced
conductance is predicted, while a suppressed conductance is predicted for tunneling through a quantum
dot in the fractional quantum Hall regime.
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The formulation by Landauer [1] and Biittiker [21 of
the current through a finite, possibly disordered region of
noninteracting electrons has tremendously enhanced the
understanding of transport in mesoscopic systems [3].
The Landauer formula, which expresses the current in

terms of local properties of the finite region (such as the
transmission coefficient) and the distribution functions in

connected reservoirs, has been used extensively and suc-
cessfully in many areas, including the scaling theory of
localization [4,5], universal conductance fluctuations [6],
Aharonov-Bohm conductance oscillations [7], the integer
quantum Hall efTect [8] and its quenching [91, the quant-
ization of ballistic conductance [10], and recently in the
field of quantum dynamics of driven systems (quantum
chaos) [11].

While both the derivation of the Landauer formula for
noninteracting electrons [3] and its application are well

established, an apt formulation of the current when in-

teractions between electrons are involved has been lack-
ing. In view of the recent technological progress in

confinement of electrons into small regions, where the
electron-electron interactions plays a major role in the
transport [12], it is quite clear that a Landauer-type for-
mula for the transport through such an interacting region
is highly desirable. Several attempts have been made to
deal with special cases [13]. Langreth [14] was able to
express the linear conductance through a single site with

an on-site interaction (the Anderson model) at zero tem-

perature in terms of phase shifts and thus relate the con-
ductance to a scattering matrix. Apel and Rice [151 ap-
proximated the interaction in one dimension by the values
of the momentum transfer Bq at Bq =0 and Bq =2k~ and
were able to derive a Landauer-like formula. Unfor-
tunately, this approximation is unsuitable for electrons
confined into a small region. More recently, Hershfield,
Davis, and Wilkins [16] have been able to derive a for-
mula for the current in the Anderson model.

In this Letter (a) we derive an exact formula for the
current through a region of interacting electrons coupled
to two multichannel leads where the electrons are not in-

teracting. The formula we derive [Eq. (6)] expresses the
current, as in the noninteracting case, in terms of the Fer-
mi functions in the leads and local properties of the in-

teracting region. (b) We show how the noninteracting
case and the results of Langreth and of Hershfield, Davis,
and Wilkins follow as special cases. (c) The current will

be written in a particularly simple form for the case of a
constant asymmetry factor relating the coupling to the
left lead to the coupling to the right lead. This case will
be presented and investigated in some detail. (d) Two ex-
amples where the interactions lead to interesting results
for the current will be discussed: transport in the Kondo
regime, where an enhanced conductance has been predict-
ed [17], and tunneling through a correlated electronic
state, such as the fractional quantum Hall state, where a
suppression of the conductance is expected [18].

Our starting point is the Hamiltonian.&.cf.c&.+e;.,([d.'I; [d„})
A. ,a 6 I., R

+ g (Vi, ,„cf,d„+H.c.), (1)
k, a 6 I., R

n

where cJ, (ct„)creates (destroys) an electron with
momentum k in channel a in either the left (L) or the
right (R) lead, and [dt] and [d„jform a complete, ortho-
normal set of single-electron creation and annihilation
operators in the interacting region. The channel index in-
cludes spin and all other quantum numbers which, in ad-
dition to k, are necessary to define uniquely a state in the
leads. This Hamiltonian corresponds to an experimental
situation (see, e.g. , Refs. [10] and [12]) where two metal-
lic, multichannel leads are connected to the mesoscopic
system under study (see Fig. 1). Since the leads are me-
tallic, the interaction between electrons in the leads and
the interaction between electrons in the intermediate re-
gion and electrons in the leads are strongly screened and
can be neglected. However, in the presence of barriers
between the leads and the intermediate region, electrons
cannot flow freely to screen the interactions in the inter-
mediate region. Accordingly, the interactions between
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Gi. „(ro)=g VI,.„,[gl,.„,(ro)G,,(ro)

ga~, l;, (ro)G„',„(io)],
(3)

FIG. 1. Schematic diagram of the experimental configu-

ration for which an interacting Landauer formula for the
current is derived. Two leads, characterized by chemical poten-

tials pl. and pg, are connected to a mesoscopic region where

electrons may interact. If pl. & pp, an electron current J will

flow from left to right.

electrons in the intermediate region need to be treated
dynamically and are included in Eq. (1). This treatment
is similar to the one leading to the Anderson model of a
single magnetic impurity in a metal [19].

The logic of our approach follows that used in Ref.
[20] for the one-dimensional noninteracting case. The
unperturbed system (taken to exist at t = —~) consists
of three uncoupled regions: a left lead and a right lead,
both described by the first term in (1), and an interact-
ing, intermediate region described by the second term in

(1). Since the leads are not coupled at t = —~, each one
maintains its own thermal equilibrium and one can asso-
ciate chemical potentials, pL and pR, with the left and
right leads, respectively. As the coupling turns on be-
tween the intermediate region and the two leads [the last
term in (l)1, then, if pI. )pR, an electron current J starts
to liow from the left lead to the right lead. After some
time the system achieves a steady state. Our aim is to re-
late the steady state current to pL and pR, or equivalent-

ly, to fI.(e) and fR(e), the unperturbed Fermi-Dirac dis-
tribution functions in the leads. (We assume that the
reservoirs are large enough that the bulk pL and pR are
not perturbed by the current J.)

To this end we write the current between the inter-
mediate region and the left lead as

J=—g (Vl;. „(cf,d, ) —Vl;. ,(d,cl;.l)
k,a& L

n

[Vt.,„G„1, ~(ro) —VI„„Gt,, (CO)] .
~k, eL

The first line in (2) can be easily checked by writing the
continuity equation for the current [20], while to get the
second line we have used the definition of the Keldysh
Green function [20,21], G„q,(r) —=i(cj d„(t)). In the
Keldysh formalism, since the Hamiltonian describing the
leads is noninteracting, one has the Dyson equations

G„t. (ro) =g Va*.„,[gt. 1„(ro)G„'„,(ro)
n&

—gL. 1,,(ro)G„„,(ro)],
where G„„,(t) =—i(dt, d„(t)l,and G„„,(t), to be used later,
is equal to —i(d„(t)dt,l. The Green functions with su-
perscripts t and t are the time-ordered and the anti-time-
ordered Green functions, respectively [22], and the Green
functions denoted with small g are the unperturbed Green
functions (i.e., in the uncoupled system). Using the
equalities [22] G (ro) +G (io) =G'(ro) +G'(ro) and
G (ro) —G (ro) =G"(ro) —G'(ro), where G' (G') are
the usual retarded (advanced) Green functions, and the
relations

gi; I; (co) 2'Irlfr (co)b(co el; ),
(4)

gk, k, (ro) = —2ni[1 fL(co)]—b(ro —ei, ),
where a 6 L, we find

de p.(e) V..(e) V.*., (e)
aGL
n, m

& {fI(e) [G:., (.e) Gg —., (e)]+G.'., (e)],
(s)

where p, (e) is the density of states in channel a and
V, „(e)equals Vi, „

for e=ei, . An equivalent formula
can be derived for the current between the intermediate
region and the right lead. Since, in steady state, the
current is uniform, one can symmetrize Eq. (5), and us-
ing matrix notation for the level indices in the interacting
region, we find

J= de( tr {[fl(e)I —fn (e)I ](G' —G')]
2h~

+tr{(r' —r )G'[), (6)
where I „=2xg,c L p, (e)V,,„(e)V,*, (e), with I

„

defined similarly. In equilibrium, fL(e) =fn(e) f,q(e),
one has G —f,q(G' —G') and the current vanishes.

Equation (6) is the central result of this work. It
expresses the current through the interacting region in
terms of the distribution functions in the leads and local
properties of the intermediate region, such as the occupa-
tion and the density of states. (The local density of states
is proportional to the diagonal part of G' —G', while G
is a product of the density of states and the occupation
[231.) Note that these are to be calculated in the pres
ence of the leads.

For the noninteracting case one can write down Dyson
equations for the Green functions in the intermediate re-
gion [20], G =if1 (e)G'I G'+if'(e)G'r G' and G'
—G'= —iG"(I +I )G', which enable us to rewrite
(6) as

J=— de[fI (e) fn(e)] tr{G'I G'r—'-[ .
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Since the transmission coe%cient from left to right is

and a' C L, Eq. (7) reduces to
eJ =— de (fg (e) f R

—(~) l tr {tt+(e)j, (8)

which is the usual two-terminal Landauer formula for the
noninteracting case [24].

The conductance formula, Eq. (6), takes an especially
simple form [25] for the case that the couplings to the
leads diff'er only by a constant factor, I (e) =A.I (e),

J=— de[fg (e) fR(e—)]tr{I (G' —G') j

delft (e) —fR(e)] lm[tr{l G"}], (9)

where I =I 'I /(I'+I ). While this innocent looking
formula resembles the noninteracting one, it should be
emphasized that even though there is a single integral
over energy in (9), this formula includes, by means of the
full Green function G, inelastic processes, spin flips, and
even processes where several electrons are scattered.

In order to illustrate how the additional processes due
to interactions are reflected in the formula for the
current, we use the usual definition of the self-energy X',
namely, X'=(g') ' —(G") ', with Z' defined similarly,
to write G' —G'=G'XG', where Z=X' —X'. This al-
lows us to rewrite Eq. (9) as

J =—' de[II (e) fR(—e)] tr{rG "ZG j

de[II. (e) fR(t')] tr{G I GT ZO 'Xj, (10)
h ~

where Xo, the self-energy for the noninteracting case, is

equal to i (I + I —) Compar. ing Eq. (10) to the
noninteracting results, Eqs. (7) and (8), we see that in

the presence of interactions the current cannot in general
be recast in terms of the transmission matrix, and that
the additional processes included in X are directly respon-
sible for the deviation of the exact formula for the in-

teracting case from the usual Landauer formula [Eq.
(8)]. Note, however, that at zero temperature and in

linear response only single-electron, elastic processes are
allowed by energy conservation. In this case X(p)
=Zo(p) and Eq. (10) reduces to the usual Landauer for-
mula (8) (this is a generalization of the Langreth [14] re-

sult for the Anderson model). Thus the Landauer formu-

la for the linear-response conductance holds not only for
the noninteracting case, but also for the interacting case

at zero temperature. At finite temperature, or at finite
voltage, inelastic processes have to be taken into account
and the usual Landauer formula (8) breaks down for an
interacting system.

ln order to demonstrate the new features of Eq. (9), we
now study two specific examples. The first is transport
through a quantum dot in the Coulomb blockade regime
[12]. Recently, the Anderson Hamiltonian [19],

H=geq~J cl, +eogdtd +Unini
A;o e

+ g (Vl, el|+ +H.c.), (il)
4 Gl. , R

has been employed [26] to describe transport in this re-

gime. Equation (11) is a special case of (1), where the
different channels are the two spin directions, and the in-

teracting region is a single site with an on-site Coulomb
repulsion U. In this case the current takes the form

J=—g ~ de[11 (e) —fR(e)]l (e) ——lmG' (e)e 1

a R'

(i 2)
where —(1/z) lmG" (e) is just the local density of states
of electrons with spin cr. In linear response, for tempera-
tures larger than the Kondo temperature, the conduc-
tance will consequently exhibit resonant tunneling peaks
only at eo and t.o+U, which correspond to resonances in

the density of states of the uncoupled site [26]. However,
below the Kondo temperature, the density of states devel-

ops a peak at the Fermi energy [27], for fo (p ( ED+ U.
Consequently, Eq. (12) predicts a greatly enhanced con-
ductance over this entire range, in agreement with earlier
studies [17]. Equation (12), which has been indepen-
dently derived by Hershfield, Davis, and Wilkins [16] for
constant I, provides a framework to study the crossover
from high to low temperatures, and to calculate the
current in a Kondo system out of equilibrium. Detailed
studies will be presented elsewhere [28].

A second example where nontrivial effects due to in-

teractions appear in the conductance is the case of tunnel-

ing through a quantum dot in a highly correlated state,
such as a fractional quantum Hall state. In the case
where the coupling to the leads is weak, i.e., the elastic
broadening of the levels is smaller than the excitation en-

ergy, the correlated eigenstates are only weakly perturbed

by the leads. %hen the temperature is larger than the
elastic broadening one can rewrite Eq. (9) for the linear-

response conductance 6 in the form

&v, ld.'lw &&v;Id Iv, &.

~here the y; are eigenstates, with energies E;, of the uncoupled interacting region, and P; is the equilibrium probability
of state p;. Hence, the conductance consists of thermally broadened resonant tunneling peaks which occur whenever the
chemical potential p su%ces to add another electron to the interacting region. For noninteracting electrons, one can
choose the d's to correspond to single-particle eigenstates of the uncoupled system, and the overlap factor in each term,

&y~. ld„ly;&&y;Id~I@~&, is trivially 0 or 1. On the other hand, adding an electron in a single-particle state to a correlated
N-particle eigenstate —which cannot be written as a Slater determinant of single-particle states —will generally not pro-
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duce an (N+ I)-particle eigenstate, and consequently

these overlap factors can reduce the conductance

significantly. In particular, the conductance through a

quantum dot in the fractional quantum Hall regime has

been studied in detail in Ref. [18] where it was shown

that the overlap factors reduce the conductance peaks by
a factor of I/Ntt' ' l, for the v=1/p Laughlin state,
where N is the number of electrons. Thus Eq. (13) pre-

dicts a strong suppression of the conductance in this re-

gime, an effect of considerable experimental significance.
Moreover, formula (13) provides a way to calculate the

conductance in more complicated fractional quantum

Hall states (such as v —', ), where even more interesting

effects, such as an alternating suppression of the conduc-

tance peaks, are predicted to occur [18].
To conclude, we have derived a Landauer-type formula

for the current through an interacting electron region.
This formula provides a new framework to study trans-
port in mesoscopic systems where interaction effects are
important. We have demonstrated the usefulness of this
new tool for interacting systems by identifying novel

features in the conductance for t~o examples: the Kondo
regime and the fractional quantum Hall regime. Further
investigations are currently under way.
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