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Order a lna ' fRvD Corrections to the n =1 and n =2 Energy Levels of Positronium
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The order a Ina ' favo corrections to the n= l and n =2 energy levels of positronium are calculated
using the conventional Bethe-Salpeter formalism. The Barbieri-Remiddi potential provides a suitable
zeroth-order kernel about which perturbation theory is developed. A simple algorithmic method which
amounts to an expansion of the interaction kernel in powers of the momentum divided by the mass is

shown to suffice to extract the lna ' terms from most of the interaction terms.

PACS numbers: 36.10.Dr, 11.10.St, 12.20.Ds

Positronium (Ps) [1-3],the purely leptonic bound state
of an electron and positron, is a fertile area of theoretical
and experimental research since the investigation of its
properties allows for a very accurate test of quantum
electrodynamics, a test which is unobscured by the pres-
ence of other forces.

The expression for the energy of any positronium state
can be written as an ascending series in the fine-structure
constant a [4], specifically,
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where the spectroscopic notation n +'L2J+1 labels the
state and the dependence of the constants a, b, . . . on the
quantum numbers n, j, I, and s is suppressed. The Ryd-
berg unit of frequency frtvn is cR, where R is the
Rydberg wave-number constant [5].

Of primary interest are differences between energy lev-

els. In particular, the energy difference between the two
n =1 states (the hyperfine splitting), the splitting between
the triplet 2S-1S states, and the splittings between the
n=2 triplet I=0 state and the n=2 triplet 1=1 states
have been the subjects of ongoing experimental research.
Consequently, their theoretical values are of significant
interest.

For the n =1 and n =2 states, the constants a, b, c, and
d have been calculated [6-11]. The spin-dependent part
of e and some of the spin-dependent part of f have been
computed for the n= 1 state (for the hyperfine splitting)
[12-20]. In this paper we report on a calculation of the
complete coefficient e. This calculation is important as a
more precise experiment to measure the 1S-2S splitting is
planned [21]. This experiment will test theory at the
a fRvo level and so will provide another precision test of
QED.

To do the calculation the conventional Bethe-Salpeter
equation is employed [22]. The Barbieri-Remiddi solu-
tion [19] is used as a solvable zeroth-order equation about
which a perturbation series [20] is developed. A typical
term in the perturbation series which contributes to the
shift of the nth energy level is of the form fd4qd4p

x Vr(p)K(p, q)y(q), where Vr(p) is the four-dimensional
solution to the Bethe-Salpeter equation with the Bar-
bieri-Remiddi kernel, a solution which reduces to the
Schrodinger-Coulomb wave functions in the nonrelativis-
tic limit. K(p, q) is an expression which can be associat-
ed with the Feynman diagrams. The perturbation series
produces integrals which have a complicated functional
dependence on a. Aside from the explicit a dependence
generated by the number of photons exchanged in a par-
ticular Feynman graph, the dependence on the fine-

structure constant comes from two main sources (m, is

the electron mass): (1) The functional dependence of the
wave functions on the Bohr momentum (-am, ); and (2)
the dependence of any propagators in the kernel K(p, q)
on the total energy since this quantity goes as 2m,
+O(m, a ).

The integrals encountered are in general very compli-
cated and cannot be done exactly. However, in order to
calculate the a lna 'fRvo dependence we can replace
the exact integrands by approximate ones which can be
integrated and which will reproduce the correct logarith-
mic behavior. This is because the logarithmic depen-
dence on a can only develop when the integration vari-
ables are restricted to the range -am, to m, . (The vari-
ables of integration are the internal momenta. ) It suffices
then to expand the integrands in powers of the momen-
tum divided by the mass (the nonrelativistic expansion)
provided a cutoff of the order of the electron mass is sup-
plied. Then, those terms which in the final momentum

integration go as f, ',dp(1/p) are those which generate
lna ' expressions and are of interest to this calculation.
(This method has been successfully used by others to ex-
tract similar expressions for the positronium hyperfine
splitting. See in particular Refs. [14] and [20].)

To order a lna ' frtvn, integrals to four loops must be
evaluated where each wave-function integration is count-
ed as a loop integration. This requires the computation of
terms in the perturbation kernel to two loops. For this
calculation it is convenient to use the Coulomb gauge and
we find that with the exception of the one transverse pho-
ton kernel and those kernels where a transverse photon
crosses a Coulomb photon or two parallel Coulomb pho-
tons, the expansion of the integrand in powers of momen-
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turn over the mass works well. However, for the above-
mentioned kernels such a naive expansion does not
succeed since spurious infrared divergences are generat-
ed. This is a consequence of the more singular nature of
these graphs in the low momentum region. This more
complicated behavior is first manifested at the a fRYp
level where these graphs contribute to the Bethe loga-
rithm [23].

To calculate the terms of interest of these kernels the
leading-order a fRYp terms are first subtracted, a meth-

od suggested by the work of Grotch and Yennie [24].
Then, nonsingular nonrelativistic expansions can be made
on the remainder terms which are suicient to extract the
a Ina 'fRYp terms.

For the n= I state the total a lna ' fRYp term is g

times the n =2 value. This relation, confirmed by explicit
calculation, is a consequence of the same asymptotic form
modulo normalizations for all 1=0 Schrodinger-Coulomb
wave functions in the logarithmic region.

Calculations yield the following additions to the energy
levels:
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These values must be added to the a fRYp and a fRYD terms. The order a fRYp terms can be calculated using Ferrell's

formula [9]:
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whil«or the n =2 states the a fRYp terms were reported some time ago by Fulton and Martin [10]. However, the n =1
terms must be computed separately since terms of this order do not scale as 1/n as erroneously reported [25]. The
correct value has been noted by several groups [26,27].

We can now write down the theoretical expressions for the energy levels and diA'erences of the energy levels of experi-
mental interest:
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TABLE I. Numerical values in megahertz of the individual terms in Eqs. (4)-(8). The last two columns are the sums of the terms
to order a'fRvp and a Ina 'fRv p

E(l Si)
E(2'S, )
E(2'P, )
E(2'P, )
E(2'P.)

fRvD

—
1 644920980.55
—411 230 245. 14
—41 130245. 14

—411 230245. 14
—411 230245. 14

&'favp

89419.17
7413.59
—980.87

—5 360.59
—10835.23

a fRvp

1 733.14
231.71

0.91
—5.03

—15.63

u lna ' fRvp

7.65
0.96
0.00
0.0
0.00

Total(a'f Rvp)

—
1 644 829 828.24
—411 222 599.85
—411 231 225. 11
—411 235 610.75
—411 241 095.99

Total

—
1 644 829 820.59
—411 222 598.90
—411 231 225. 11
—411 235 610.75
—411 241 095.99
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rmined values of vp, v[,
parts in 10 [31,32].

t is 1 part in 10 for v2

d v~ more experimental
son of the experimental
ed to provide a more

r the 1S-2S transitions
e a lna 'fayp coeffi-
s needed. As previous-
ned with an expected

factor-of-10 improvement in accuracy [21]. This new ex-
perimental determination of V2~ will probe the a lna
coefficient.

We should also estimate the order of magnitude of the
yet to be calculated a frtyp term. If we assume that the
coefficient scales as 1/n, as it approximately does for the
a fayp term, we get a contribution to vqi of the order of

a ' =137.0359895(61),

R =10973731.5709(18) m

c =299 792 458 m/sec,

fayp=eR =3289841961.1(5) MHz.

=frtyp a + + ln2+ lna ——lnR(2, 0)+—lnR(2, 1) + a lna
5 a 13 1 3 ) 1 1 1 4
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The expressions InR(n, l) are the Bethe logarithms
[28-30]. Specifically, lnR(1, 0) =2.9841285, lnR(2, 0)
-2.8117699, and lnR(2, 1)= —0.0300167. S;„ th 41„if ffi-

Table I lists the numerical values of the individual and several arts in 105 for v anor vp an
terms of the frequencies given in Eqs. (4)-(8), along with recision is needed before com
the sum of these terms through order a frtyp and and theoretical va]ues
a lna 'frtyp. Table II is a similar listing for the fre-

strin ent test of QED
quency diff'erences. The entries in this table can then be Th d t [33] f
compared to the experimentally measured values present- t d 3agree o or er a JRyD.
ed in Table III. To compute the theoretical numbers the c,+pe a more accur t pfollowing values [4,5] of the constants appearing in for-
mulas (4)-(12) were used:

TABLE II. Numerical values in megahertz of the individual terms in Eqs. (9)-(12). The
last twn columns are the sums of the terms to order a'favn and a lna ' favp.

fRvD & fRvn a fRvp a lna 'fRvp
Total

(& fRvn) Total

v21 1 233 690735.41 —82005.59 —
1 501.44

v2 0.00 8 394.45 230.80
12 774.17 236.74

vo 0.00 18 248.81 247.33

—6.69
0.96
0.96
0.96

1 233 607 228.39 1 233 607 221.69
8 625.25 8 626.21

13010.90 13011.86
18496.14 18497.10
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TABLE III. Experimental values in megahertz of the frequency differences corresponding to
Eqs. (9)-(12).

Frequency
difference Brandeis [30]

8 628.4(2.8)

Michigan [31]

8 619.6(2.7) (0.9)
13001.3(3.9)(0.9)

18 504. 1(10.0) (1.7)

Bell Labs [32]

1 233 607 218.9(10.9)

& (a"/tr)fayo-2. 60 MHz. This is 2. 1 ppb (parts per
10 ) which is in the range of the accuracy of the new ex-
periment. Consequently, the complete (a /tr)fRyo term
must be calculated, a task which the author is currently
pursuing.
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