
VOLUMI= 68, NUMBI. R 16 PH YSICAL REVI EW LETTERS 20 APRIL 1992

Theory and Experimental Evidence of Electroconvection around Electrochemical Deposits
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%'e propose a model for the motion of the fluid How, for the electric field, and for the concentration

map around the branches during electrodeposition of ramified metal clusters in two-dimensional cells.
This model accounts for the observed distribution of ions in the solution around the metal tips.

PACS numbers: 68.70.+w, 47. 15.Hg, 81.15.Lm, 82.45.+z

Electrochemical deposition consists of growing a metal-
lic cluster in an electrochemical cell filled with a solution
of a salt of the metal, by imposing a constant current, or
potential diflerence, between the electrodes. We restrict
ourselves to thin rectangular cells and constant current.
The theory can be extended to other cases. At the
cathode, the reaction is

M=++ ze ~ Md@posit (1)
(M is the metallic ion, z+ its charge, and e the elec-
tron). The morphology of the deposit depends on the
current density J. A forestlike deposit grows on the
cathode for J & Jo= 1 mA/cm . The "trees" look tortu-
ous and "fractal" for J ( 20 mA/cm, and look parallel
and vertical for J &40 mA/cm . Considerable eff'ort

[1-19] has been devoted to understanding the growth re-

gimes of the deposits as a function of relevant parame-
ters. The early work in the field [2-5] was triggered by a
possible relationship between the deposits observed at low

J and the diff'usion-limited aggregates [20,21]. Recently
a model [12-14] and experiments [13-18] focusing on

the high-J regime have addressed the problem of the in-

terplay of the electric and the diflusion fields of the two
kinds of ions. This model [12] is an exact solution of the
motion of the ions around an array of branches which are
growing in a steady solution (hydrodynamical effects are
ignored). It predicts two fundamental facts: (i) The
growth speed of the deposit is the speed at which the
anions withdraw from the deposit. That is, v,
= —p, Eb„]k, where p, is the mobility of the anion and

Eb„~k the field in the electrolyte facing the branches. (ii)
There exist positive charges at the tips of the branches
(over a distance of about I pm). However, the concen-
tration gradients as described by this model do not corre-
spond to the observed ones [15-17]. We show in this
Letter that the charges at the tips can provoke convective
motion of the fluid, and that the solution of the coupled
electrical and hydrodynarnical problems, when neglecting
diflusion, leads to a concentration map which is of the ex-
perirnentally observed shape. In the following, we first
calculate the streamlines of the fluid. We then derive the
electric field and the concentration map around the de-
posit. This will lead to a concentration map with two
zones: a zone free of ions and a zone of constant concen-
tration. The sharp gradient at the virtual interface be-
tween the two zones is expected to be widened by
diflusion. We then briefly present some new experimen-

tal evidence of the existence of fluid motion around the
tips, and an observation of the concentration gradients
during growth which is in agreement with the model, ex-
cept that the virtual interface is found to be wide.

In order to compute the fluid flow around the deposit,
we model the deposit as a comb of rectilinear equally
spaced and infinitely thin needles which grow between
two plates in a thin layer of electrolyte (see Fig. I). The
comb is infinite and the spacing between the teeth is b.
We suppose that the cathode is far behind the deposit,
which has already been growing for a while, so that a sta-
tionary growth state is reached [12]. It is not necessary
to set boundaries in the y direction. Since the deposit is

not compact at scales between 0. 1 mm and 1 pm, the
solution can flow through it. We then make the approxi-
rnation that the solution flows freely through the needles.
The last approximation is to suppose that the charge Q
which is found at each tip is pointlike. A local field E is

also present there, which is much larger than Eb„Ik,as ex-
pected from the case without convection [12]. Since the
charged zone may extend over 1 pm, this approximation
seems reasonable: In the 2D approximation we only con-
sider the case where the distance between neighboring
trees is larger than the thickness of the cell (200 pm). As

a consequence, the ffuid experiences a local force f (in

contrast to gravity-driven convection, f is not a bulk

force). f can be represented as a 2D Dirac vector func-

tion located at the tip:

f =QE*b(r —r„p).
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FIG. 1. Schematic view of the cell. The field El,„]kis con-

stant far ahead. The growth speed is —p Eh„lk. A convective

motion is driven by the force f existing at the tips.
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vh, curlv —curl f . (4)

So far, the speed is a function of the three coordinates
x,y, z (see Fig. 1). However, since the cell is very thin,
the z dependence of v can be modeled as a Poiseuille flow

[22]:

v(x,y, z) =g(z)(v)(x, y) with g(z) =(6/s')z(s —z) (5)

(s is the thickness of the cell and (v) the average speed
along the z direction).

Now, the Laplacian of v decomposes into two terms:

Av(x, y, z) -g(z)a2(v)+ (v)
8'g(z)

(6)z'
in which h2 is the two-dimensional Laplacian restricted to
the x and y variables. In this decomposition, the first
term is of order g(z)v/b while the second one is of order
g(z)v/s . So, the first term is certainly very small com-
pared to the second one, and can be neglected (this means
that variations of v are expected to be larger in the z
direction than in the x-y plane). We now drop the brack-
ets for the average speed in two dimensions. Turning
back to the NS equation, we have

vcurlv(x, y) = —(s /12)curlf .

We now introduce the stream vector [22] 8', such that
9'=(0,0,%'(x,y)), and v curl%. Equation (7) leads to

s' Bb(r)
12v 8x

Noting that + is similar to the vector potential for the
magnetic field generated by a distribution along z of
magnetic dipoles parallel to y, the solution is

2
1 s I x

2x 12v r2

We now calculate the streamlines around a comb. The
force is now an array of equally spaced "Dirac forces. "
The solution is simply analogous to an array of equally
spaced lines of dipoles:

s ~ g x —kb
24m v k —~ rk

(10)

where rk is the distance to the tip of rank k.
So far, the comb has been considered to be motionless.

It is oriented in the direction antiparallel to growth. We
can now solve the Navier-Stokes (NS) equation for this
problem (see Fig. 1). As a first step, we determine the
fluid flow around a single motionless needle, whose tip is
located at the origin of the axes. The NS equation in the
steady-state regime, and for low Reynolds numbers, is
[22]

—VP+ tv+ f =0 (3)
(v is the fluid velocity, P the pressure, and v the dynamic
viscosity). Taking the curl of Eq. (3), we write

We now take into account the fact that the branches
grow at a velocity of v, by subtracting v, from the veloci-

ty of the flow. This corresponds to adding a linear term

v, x to the stream function, which becomes

2 k=+~
5 I g x kb

24+v k = — rk

This is an almost exact solution of the problem of the
flow around the growing charged comb, in the limit of
low Reynolds number. The streamlines are the con-
stant-+ lines; they are shown in Fig. 2. Far away from
the tips, forward and backward, the liquid is at rest In.

the moving frame, this corresponds to a constant velocity
—v, parallel to the branches. Between a pair of
branches two vortices are formed, which have a singulari-

ty at the tips, where the speed of the fluid is infinite.
(This singularity could be removed by replacing the ideal
line of magnetic dipoles by two current lines parallel to z
with a finite spacing; this could also remove the approxi-
mation that the branches are infinitely thin. ) Another in-

teresting feature of the flow pattern is the largest closed
loops of the vortices which separate two zones: one where
the fluid is almost translated, and one where it rotates.
(One may guess that the ions lying inside the vortices be-
tween two branches will be accreted on the tip after drift-
ing in the fluid flow. This could indeed happen in a tran-
sient regime; however, we show below that in the steady
state the vortices do not contain any ions. )

At first glance, a derivation of both the field and the
concentration maps, by solving the full Laplace and drift
equations [12] coupled to the NS equation, seems a for-
midable task. However, since anions do not deposit, and

FIG. 2. The pattern for the streamlines, in the moving
frame. Two vortices located between two neighboring branches
are represented. The pattern is periodic along the x direction.
The anions must be frozen in the moving frame, so that the
charges at the tips do not increase. The largest loops of the vor-
tices form an arch which is necessarily a field line and the limit
below which no ions are found.

2493



VOLUME 68, NUMBER 16 PH YSICAL REVI EW LETTERS 20 APR I L 1992

since the charge at the tips is constant, the anions must
be frozen in the moving frame. This implies that wherev-
er anions are found in the solution, the field is such that
—p E+v=0. As a consequence, two zones will exist
around the deposit: (1) a zone containing anions where

p„E= —v, and (2) a zone free of anions, and hence of
cations, where the actual shape of the electric field does
not matter.

Diff'usion eflects can be neglected in the first zone be-
cause the concentrations are constant there, as explained
below. However, neglecting diA'usion at the frontier be-
tween these two zones, where a step of concentration is

found, is a rather crude approximation. We shall, howev-

er, proceed with this approximation, until we compare the
predictions to the experiments. When neglecting diffu-
sion, the frontier between the two zones is a virtual inter-
face: This line must itself be both a field line and a
streamline. Since the concentration is uniform far ahead
of the deposit, this line must be convex. If we now turn
to the fluid flow pattern, we see that the only field line
ahead of the deposit which is convex is the arch formed

by the largest closed loops of the vortices; the zone con-
taining the anions is necessarily on the upper side. As a
consequence, in the moving frame, the two zones men-

tioned above are (1) the zone on the upper side of the
arch, which acts as a funnel for the cations, and in which
the anions are frozen (Fig. 3); and (2) the vortices them-

selves, which are empty of ions of both kinds.
The arch itself is composed of two field lines which end

up on two tips. Now, the concentration of both cations
and anions in the funnel is equal to the bulk concentra-
tion Co. Indeed, the water being incompressible, the flux

of fluid is conserved in the funnel, and the flux of E is

also conserved. The conservation of the flux of cations
implies that the concentration is equal to Co. The con-
centration of anions is identical to the concentration of
cations because of electroneutrality.

In the funnel, the field and streamlines are identical.
The field lines that would exist between a comb and a flat
anode in a neutral medium do not have such a shape.
Now, this peculiar shape must be achieved by some
specific distribution of charges along the arch, bringing
the normal component of the field along the arch to zero.
The model then predicts the existence of charges along
the virtual interface between the solution containing ions

and the vortices. These charges may add a new convec-
tive force acting on the fluid; this force is certainly much
weaker than the one acting at the tip because the field is

much larger at the tip. Inside the vortex the field line

pattern is obtained by simply superimposing the solution
of the electrical problem without the charges, and the
perturbation caused by the charges.

The predictions of this simplified model of growth are
as follows: (1) There exist convective vortices between the
tips; (2) ahead of the vortices the electric field is propor-
tional to the fluid velocity, in the moving frame; (3) there

va 1i +~i

FIG. 3. Experimental observation of the arches during

growth of copper sulfate, 5.x10 '- moll '. The geometry of the
cell is 1.8 mm&1. 4 mmx0. 1 mm, and the electrodes are along
the larger side. A constant potential of 5 V was applied. The
interferential contrast allows us to see the concentration gra-
dients. The figure must be viewed as a shadow picture of the
concentration profile; the fictitious spotlight direction is indicat-
ed by an arrow. The concentration is equal to the bulk concen-
tration on the upper side of the arches, and to zero belo~ the
arches. The drawing shows the velocity of an anion and of;»
cation, in the moving frame (left) and in the laboratory frame
(right). Inside each diagram, the anion is sketched on the left,
and the cation on the right. The anions are frozen in the mov-

ing frame, and are merely translated with a velocity —p E&.]k
in the laboratory frame. The velocity of the cations is

(p„+p, )E in the moving frame, and (p, +p, )E —p„Ehg[k in the

laboratory frame.

exists a depleted zone below the arches; (4) the concen-
tration in the funnel is equal to the bulk concentration;
and (5) there is a distribution of charges along the arch,
which is a virtual interface.

Let us note that, as pointed out by Bruinsma and Alex-
ander [23], the force on the fluid is not expected to ini-

tiate convection when the interface is flat, because it is

oriented in the wrong direction. However, as soon as the
tips exist, the charge is no longer located along a flat in-

terface, and an order-of-magnitude estimate shows that
the force is strong enough to initiate convection [24]. Let
us note also that decreasing the force at the tips, and

hence the speed in the vortex, makes the arches flatter
[24].

Previous experimental observations of concentration
maps around the tips have appeared in Refs. [15-18].
The arches were seen in the particu1ar case of a dark
anion [17,18], namely, (Naphtol-blue-black), and

copper as cation. We report in this Letter new evidence
of the existence of the arches in a standard case. We
have photographed growths from a solution of copper sul-

fate (5X 10
'

moll ') under a microscope (Nikonl04)
with Nomarski interferential contrast which allows us to
see refractive index gradients. Since the refractive index
of the solution increases with increasing concentration,
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this allows us to actually see the concentration gradients.
An example of the resulting pictures is shown in Fig. 3:
The arches clearly appear, and their shape depends on the
speed of the vortex below. This speed is not uniquely
determined, which seems sensible since the charges at the
tips and the local field depend on how advanced a tip is.
The vortices were also seen, though their pattern could
not be quantitatively compared to the predicted ones. Let
us note that the tip of the branches is a very active zone
because of the high speed of the fluid which goes through
the deposit. Of course, the observed speed is not infinite.
As expected the observed arch is not infinitely steep, since
diffusion will spread over a finite length the sharp virtual
interface which would otherwise exist. However, the sim-

ple model presented here captures the main features of
the steady state. In principle, the theory presented here
can be extended to any distribution of tips and forces
(possibly fractal) by changing the driving term in Eq.
(8).

Let us stress the following point: Each time a branch
undergoes tip splitting, a pair of vortices are created.
Each time a branch dies, a pair of vortices disappear. It
is possible that the average spacing between trees, and
hence the morphology of the deposit, is determined by the
characteristic size of the vortices. The latter is linked to
the value of the charge at the tip, itself linked to the BV
parameter of Refs. [12] and [13]. Work along these lines
is in progress. A possible role of Marangoni convection
has been conjectured recently [7(b)]. Whatever the ori-
gin of the convection, the overall discussion concerning
the existence of two zones of different concentrations and
the motion of the anions will remain, as soon as a flow

pattern is given. However, the concentration profile that
we report is at variance with the ones previously reported
[15], which may be due to different chemical conditions.
Especially, the case of zinc is certainly different because
of crystalline anisotropy.
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