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A combination of video polarization microscopy and extensive digital line pattern analysis has been in-
voked to examine in quantitative detail the transformation of a lamellar into a “labyrinthine” magnetic-
stripe domain pattern. The evolution of disorder is found to be mediated by a sequence of transverse,
“smectic” instabilities culminating in the generation of disclination dipoles. Their subsequent continuous
“unbinding” facilitates the formation of a globally isotropic nonequilibrium pattern adopting the topolo-
gy of a binary tree and displaying a well-defined morphology with a motif in the form of oblong, polygo-

nal clusters of linear-stripe segments.
PACS numbers: 61.70.—r, 05.70.Fh, 64.70.—p, 75.70.Kw

Uniaxially modulated states abound in both two- and
three-dimensional condensed-matter systems. Widely
studied examples include the following: the ubiquitous
lamellar or smectic phases of liquid crystals [1], surfac-
tants [2], and block copolymers [3]; linear arrays of
domain walls or discommensurations stabilized by com-
peting periodicities such as those of rare-gas atomic and
simple molecular adsorbate layers and the crystalline sub-
strates on which they are deposited [4], as well as those of
intercalates and their graphite host [5]; steps decorating
reconstructed surfaces of certain semiconductors [6] and
metals [7]; and stripe domain phases in ferrofluids [8],
Langmuir monolayers [9], and thin magnetic garnet films
[10], favored by the competition between a local attrac-
tive interaction, manifesting itself in the form of a
domain-wall energy, and a repulsive electrostatic or mag-
netostatic interaction of long range [11]. The latter class
of materials, long the subject of a substantial and ongoing
effort to realize a variety of devices [12], has recently re-
ceived renewed attention focusing on dynamic as well as
structural aspects of their characteristic “‘stripe” and
“bubble” phases [11]. Topological considerations play an
essential role, whether they pertain to the cellular net-
work of coarsening bubble domains [13], to the melting
of bubble lattices [14], to the sequence of domain-wall bi-
furcations in thick garnet films [15], or to the constraints
governing a complex variety of disordered, nonequilibri-
um stripe patterns [16].

In this Letter we investigate the evolution of disorder in
the two-dimensional lamellar ground state of magnetic-
stripe domains transforming the initial ordered pattern
into a globally isotropic *“labyrinthine” pattern [16-18].
We show that this process is mediated by a sequence of
transverse instabilities bearing a close resemblance to
those of smectic liquid crystals subjected to compressive
or dilative stress [19], and culminating in the formation
and subsequent “‘unbinding” of disclination dipoles. The
emerging nonequilibrium labyrinthine patterns exhibit a
characteristic density of disclination defects, symmetri-
cally distributed between the two components of magneti-
zation and imparting on each the topology of a binary
tree. This network of disclinations delineates a well-
defined local structure whose motif is an oblong cluster of
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parallel line segments of characteristic size and shape, an-
alyzed in detail elsewhere [18,20].

Experiments were performed on ferrimagnetic garnet
films of composition (YGdTm);(FeGa)sO,,, grown epit-
axially on the (111) face of gadolinium gallium garnet
substrates to a thickness of approximately 13 um. These
films are characterized by a saturating magnetic field of
approximately 70 Oe at room temperature, a uniaxial an-
isotropy of greater than 30:1, and a (zero-field) critical
temperature of approximately 192°C. Domains of alter-
nating “up” and “down” magnetization were visualized
in a transmission polarization microscope aligned for
Kohler illumination, relying on the Faraday effect and
the contrast enhancement afforded by video detection
[21]. Digital image analysis was performed on a system
described previously [22], employing a set of algorithms
for line pattern analysis of which a detailed exposition is
given elsewhere [20].

To generate the lamellar patterns exemplified by Fig.
1(a), films were cooled from the paramagnetic phase in
the presence of a small (H;< § Oe) symmetry-break-
ing intraplanar, but zero normal (H,=0 Oe) field
[16,18,23]. The temperature dependence of the lamel-
lar spacing, d =dy,=o(T)=2n/q, analyzed elsewhere
[23,24], requires adjustment of the number N=Lo/d of
stripes present in a lamellar pattern of area 4=Lg4. Dur-
ing cooling, this adjustment, implying the ““coarsening’ of
the pattern, is facilitated by the generation and glide of
dislocation pairs; this mediates the expulsion of affected
stripes, a phenomenon analogous to what has been recent-
ly reported in the context of convective roll patterns [25].
In contrast, the increase in the density of stripes implied
by heating requires the “injection” of additional stripes if
the lamellar state is to be maintained. This is not ob-
served. Instead, heating of the lamellar phase, realized at
a temperature T, induces a transverse instability of the
ordered stripe pattern, as illustrated in Fig. 1, and medi-
ates the eventual formation of a globally disordered,
labyrinthine state via the formation and unbinding of dis-
clination dipoles.

Optical diffraction spectra demonstrate that the lamel-
lar ground state first becomes unstable to a single trans-
verse mode, corresponding to a sinusoidal modulation.
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Inspection of transient intermediate states yielding the
fully evolved undulation (or “buckling”) instability de-
picted in Fig. 1(b) reveals the amplitude growth to be
continuous. From the diffraction pattern [26], the wave-
length, A, =27/q ., of the unstable mode is found to be
A1=10d,y, where do=d(Ty) denotes the fundamental
modulation period at onset. Further compression trans-
forms the undulation pattern of Fig. 1(b) continuously
into a chevron (or “‘zigzag”) pattern, illustrated by Fig.
1(c) and characterized by a Fourier spectrum containing
a set of “off-axis” peaks (g,=0). Intermediate spectra
document the gradual appearance of higher harmonics of
the transverse modulation and the concomitant disap-
pearance of intensity in the longitudinal (¢, =0) har-
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FIG. 1. (a) Transverse instability of lamellar pattern and the
resulting (b) undulation and (c) chevron patterns, driven by
temperature-induced dilative strain in zero field. (d) The for-
mation of disclination dipoles in both components of the pattern
[“black™ (a,®) and “white” (A,0); see also Fig. 2] generates a
two-dimensional structure containing characteristic rhom-
bohedral plaquettes. In (b)-(d), only the medial axis transform
(“*skeleton™) [18,20] of the original “white™ pattern component
is shown. The stripe period, do=d(To), in (a) is 35 um;
To=80°C. Values of e=(do—d)/do are (b) 0.037, (c) 0.213,
and (d) 0.225. The horizontal dimension of the field of view in
each panel is 1.1 mm.

monics of the original lamellar pattern. A characteristic
set of diffraction spectra is shown elsewhere [26].

The nature of this sequence of transverse instabilities
thus clearly reveals itself in the Fourier spectra: The
response of the lamellar ground state to compression and
the required adjustment to the implied continuous de-
crease in the stripe period d involves the addition of a
transverse component g, to the modulation wave vector
q=(qu,q.), permitting its longitudinal component g, to
remain constant: g, =q(To) =qo=2n/dyp. Under con-
tinued compression, the ratio g, /g, approaches a limit of
approximately 0.65-0.7, corresponding to typical tilt an-
gles of 32°-35° of the “discontinuity” walls [1] in which
the strain energy is localized in the fully developed chev-
ron pattern [see Fig. 1(c)]. As in the case of smectic
liquid crystals [19] these phenomena, first studied in the
present context by Molho ez al. [16], arise in magnetic-
stripe patterns as a result of dilative stress, applied by
tuning the modulation wave number ¢ =q(H,T) via its
field or temperature dependence [16,23,24,26,271, provid-
ed the number of lamellae or stripes in the sample
remains constant.

The final state of transverse distortion obtains via for-
mation of disclination defects [26,27). The decoration of
disclinations of opposite charge in the direct space image
of Fig. 1(d) reveals these to be paired into dipoles created
from the discontinuity walls of the parent chevron pat-
tern. These dipoles are aligned in a direction parallel to,
and solely determined by, the wave vector q=(g,,0) of
the lamellar ground state. Their abrupt appearance is
signaled by a pair of new, purely transverse (g;=0)
peaks in the diffraction pattern, which thereby acquires
pseudo-sixfold symmetry [26]. As may be judged from
Fig. 1(d), the dipoles are oriented so as to create pseudo-
threefold symmetry about “branch” points, representing
disclinations of — 3 charge (see also Fig. 2). Both
“white” and “black™ components of the magnetization in
the pattern contain nearly equal numbers of disclination
pairs: The distribution of topological defects thus
reflects, in this instance, the symmetry of the mean-field
phase diagram about the axis H =0 with which our ex-
perimental trajectory coincides [11,18,26]. In addition,
the spatial arrangement of defects often suggests a ten-
dency to form ordered defect arrays [19], characterized
here by the appearance of rhombohedral plaquettes
(“clusters™) of parallel, linear segments, whose vertices
are decorated by disclination dipoles [26]. The clusters’
longitudinal dimension is set by the spacing of defects
along the ridges of the parent chevron pattern, while the
transverse dimension W reflects the transverse modula-
tion wavelength: W=A,.

A globally disordered labyrinthine state, illustrated in
Fig. 2(c), evolves from the precursor pattern just de-
scribed by a continuous unbinding transition of disclina-
tion dipoles, analyzed in Figs. 2 and 3. Oppositely
charged disclinations, i.e., branch (A) and end (O) points
exhibited by the patterns in Fig. 2, are linked by *‘teth-
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FIG. 2. Continuous “unbinding” of disclination dipoles, here
driven by field-induced dilative strain at a constant temperature
of 160°C. Superimposed on the low-pass-filtered original are
“tethers” linking — 5 (A) and + 3 (O) disclination charges
[20). The characteristic stripe period, d =27/q, evaluated from
azimuthally integrated 2D Fourier spectra, assumes the follow-
ing values: (a) d=25.8 um=do, (b) d=16.8 um, and (c)
d=11.5 pym; d measures the stripe period in the direction of the
local normal. The horizontal dimension of the field of view in
each panel is 570 um. (d) A sketch of the disclination defects
in a layered medium [1,20]. These topological defects may be
assigned a charge by noting that the layer normal (1) under-
goes a rotation through * 7= ¥ x2x in one circuit around a
=+ disclination.

ers” which were identified in a given image by a series of
line pattern algorithms [20] and superimposed on the
originals as in Figs. 2(a)-2(c): These tethers are seen to
evolve from linear to curvilinear contours as their overall
length increases under magnetic-field-induced compres-
sion. Under the experimental conditions pertinent here,
tethers remain unbroken, and reversal of the unbinding
transition recovers the original pattern.

The quantitative analysis of this disclination unbinding
transition is summarized in Fig. 3 which documents the
continuous evolution of, first, the mean tether contour
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FIG. 3. Analysis of dilative-strain-mediated disclination un-
binding transition. The top part of the figure illustrates the be-
havior of (de/I}, while the bottom part contains the evolution of
the mean contour length (/) of tethers linking + &+ and — %
disclination charges, shown in Fig. 2; d is computed from az-
imuthally averaged 2D Fourier spectra. The solid line is the re-
sult of a linear fit, discussed in the text. Vertical bars delineate
+ 10, the pertinent mean-square deviation. The dilative
strain, e=(do—d)/do, is defined with reference to the lamellar
state (not shown) preceding Fig. 2(a); the notations (a), (b),
and (c) refer to the respective panels of Fig. 2: Note that only
the “white” (minority) component of each pattern was subject-
ed to analysis.

length (/), and, second, the ratio {r)=(de/l), a global
descriptor measuring the randomization of initial dipole
orientation [20,26], 0 <<{(r) <1, and defined in terms of
end-to-end distance de. and contour length; note that
r=1 for a linear contour. Provided that the total number
of disclination pairs in the sample remains constant as
unbinding proceeds, simple dimensional analysis suggests
that (/) scales as d ~'; specifically, one expects [26]
(Dd ~e=(dy—d)/dy, leading to the fit indicated in Fig.
3. The formation of disclination pairs at £¢=0.45 is
marked by finite jumps of both (/) (from 0) and (r) (from
1.0). As we have demonstrated elsewhere [18,20], the
final, disordered pattern exhibits a well-defined structural
motif, namely, an oblong polygonal plaquette or segment
cluster which may be recognized as the descendant of the
rhombohedral plaquette described above in connection
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with Fig. 1(d).

The appearance of modulated phases in thin ferrimag-
netic films may be accounted for by invoking the competi-
tion between local, attractive spin exchange and nonlocal,
repulsive dipolar interactions, as demonstrated in the
mean-field theory of the dipolar Ising ferromagnet given
by Garel and Doniach [11]. The elastic Hamiltonian also
introduced by these authors to study the formation of free
dislocations in the uniaxial-stripe phase has been recently
analyzed in detail by Sornette who proposes a local elas-
tic theory of the magnetic-stripe phase derived from the
“smectic” free energy [1,19,26,27], F=F(K,B), given in
terms of effective elastic bending (K) and compression
(B) moduli. Within this framework one thus considers
competing interactions to account for the selection of an
optimal uniaxial modulation wave number go=qo(H,T)
while the response of the corresponding stripe phase to
subsequently imposed changes of ¢ away from this select-
ed value may be described, to harmonic order, by the lo-
cal elastic free energy functional F =F(K,B).

The findings reported here support the general validity
of this concept. Remarkably, the transverse instability of
the lamellar ground-state pattern in response to tem-
perature- or magnetic-field-imposed dilative stress and
the subsequent evolution of undulation and zigzag pat-
terns, as well as the appearance of topological defects,
closely follows the analogous three-dimensional scenario
encountered with smectic liquid crystals [1,19]. In the
present case, the two-dimensional nature of the domain
patterns permits the explicit identification and tracking of
topological defect positions thereby facilitating quantita-
tive pattern analysis to follow in detail a novel strain-
induced disclination unbinding transition. This is the
process mediating the evolution of a labyrinthine state ex-
hibiting global disorder while adopting a characteristic
morphology and well-defined structure locally preserving
the original lamellar order [18,20]. We suggest that this
mechanism may be relevant to many of the uniaxially
modulated systems referred to at the outset, and may
perhaps play a more general role in the formation of cer-
tain glasses [28].
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FIG. 1. (a) Transverse instability of lamellar pattern and the
resulting (b) undulation and (c) chevron patterns, driven by
temperature-induced dilative strain in zero field. (d) The for-
mation of disclination dipoles in both components of the pattern
[“black™ (a,®) and “white” (A,0); see also Fig. 2] generates a
two-dimensional structure containing characteristic rhom-
bohedral plaquettes. In (b)-(d), only the medial axis transform
(**skeleton™) [18,20] of the original **white” pattern component
is shown. The stripe period, do=d(Ty), in (a) is 35 um;
To=80°C. Values of e=(do—d)/do are (b) 0.037, (c) 0.213,
and (d) 0.225. The horizontal dimension of the field of view in
each panel is 1.1 mm.



+n

FIG. 2. Continuous “unbinding” of disclination dipoles, here
driven by field-induced dilative strain at a constant temperature
of 160°C. Superimposed on the low-pass-filtered original are
“tethers” linking — ¥ (A) and + § (O) disclination charges
[20]. The characteristic stripe period, d =2nr/q, evaluated from
azimuthally integrated 2D Fourier spectra, assumes the follow-
ing values: (a) d=25.8 uym=d,, (b) d=16.8 pm, and (c)
d=11.5 ym; d measures the stripe period in the direction of the
local normal. The horizontal dimension of the field of view in
each panel is 570 pum. (d) A sketch of the disclination defects
in a layered medium [1,20]. These topological defects may be
assigned a charge by noting that the layer normal (1) under-
goes a rotation through * r= 1 § X2x in one circuit around a
=+ disclination.



