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Deflagration Instability in the Quark-Hadron Phase Transition
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With the aim of determining the scale of inhomogeneities produced by the transition of quarks to had-

rons in the early Universe, we study the hydrodynamic stability of slow combustion (deflagration). For a

front velocity v, the phase boundary is unstable on a time scale r —(I/v ) fm; surface tension stabilizes

bubbles below a critical size. For supercoolings implied by the bubble separations of interest for inhomo-

geneous nucleosynthesis (—1 m), r is much less than the duration of the phase transition. Bubble dis-

ruption could restore homogeneous nucleosynthesis.
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First-order phase transitions, such as in the early
Universe or the collision volume of an ultrarelativistic
heavy ion collision, evolve dynamically. A region of the
new phase is nucleated, which then grows as a bubble in

the old phase. Such a phase transition likely occurs in

the early Universe about 10/ts after the big bang, as had-
rons (primarily pions) are formed from the primeval
quark-gluon plasma. The conditions arising as bubbles

propagate, coalesce and collide, and finally disappear,
may have led to interesting cosmological consequences.
Particularly intriguing is the possibility of baryon concen-
trations emerging from the phase transition [1],and their
effects on subsequent nucleosynthesis [2,3]. In confronta-
tion with observed elemental abundances, the products of
nucleosynthesis in an inhomogeneous universe are con-
sistent with larger average baryon densities than those of
a homogeneous universe. A crucial question, then, is to
what extent baryon concentrations can survive the dy-
namics of the phase transition.

The assumption of bulk phase separation is central to
the idea of baryon concentration. It is usually assumed
that hadron bubbles expand as spherical deflagration
waves (subsonic condensation discontinuities) during the
initial states of the phase transition [4,5], then undergo a
process of collision and coalescence, and finally give way
to collapsing spherical quark bubbles in a medium of had-
rons. The actual situation could be very different if dy-
namic bubble growth is unstable. For some deflagration
processes observed in the laboratory, for example, hydro-
dynamic instability leads to turbulent bubble growth [6].
A sufficiently potent instability would lead to efficient
mixing of the phases, thereby washing out baryon concen-
trations, or preventing their occurrence altogether. Here
we study the extent to which low-velocity deflagration in

such a high-temperature gas as a quark-gluon plasma is

hydrodynamically unstable.
For bubbles much smaller than a neutrino mean free

path (—15 cm at 100 MeV), the latent heat evolved as
quarks are converted to hadrons is efficiently transported
by low-velocity bulk motions of the cosmic fluid. It is
possible that radiative transport by neutrinos plays an im-
portant role for larger bubbles later in the phase transi-
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where primes denote perturbed quantities and quantities
without primes describe the unperturbed states, assumed
constant in time and space, except at the phase boundary.

For bubbles large compared to the phase-boundary
thickness (- I fm), we may treat the phase boundary as
a discontinuity. We consider propagation of a planar in-

terface that converts quarks into hadrons, and study per-
turbations of this surface. We work in the rest frame of
the unperturbed surface, located at z=0, with quarks at
z &0 and hadrons at z & 0. The velocities vq and vh are
the unperturbed flow velocities along the z axis. The gen-
eral solutions of Eqs. (1) and (2) for the quark matter
are

/(It tf cur) qq"
cI:

ik
Vq.& Vq=

itItq
pq kqv

(3)

tion [7]. Here we restrict our analysis to the hydro-

dynamic limit. On the scales of interest, the effects of
gravity and universal expansion are negligible. We work

in units h =c =kg =1.
Fluid motions are described by the equations r)„T"'=0,

where T"'=~u"u'+pg"' is the stress tensor of an ideal
relativistic gas, w is the enthalpy density, p is the pres-
sure, and u" = y(l, v) is the fluid four-velocity. For
baryon-free matter the chemical potential is zero, and the
thermodynamic quantities are related by w=e+p=sT,
where e and s are the energy and entropy densities, T is

the temperature, dp =c, de, and c, is the sound speed.
For small (but dynamically significant) supercooling,
fluid velocities associated with the deflagration process
will be small. For simplicity then, we consider only the
low-velocity limit, i.e., v(&1. Taking the velocity and

pressure as the basic variables undergoing perturbations,
we have the linearized fluid equations for a low-velocity
relativistic gas:
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and for the hadronic matter are
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tinuity moving at constant velocity, the energy and
momentum currents (T, and T--, respectively) are con-
served across the front. For low velocities,
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Here to is the complex frequency, k is a (real) wave num-

ber, and q~ and kt= —ito+v~q, (j=q, h) are both com-
plex. The quantities A, B, and C are related by the
boundary conditions. In the hadronic region, the particu-
lar solutions with the e"" '"

dependence correspond to

ph =0. These particular solutions do not exist in the
quark region since we are seeking solutions with Imago & 0;
such solutions grow without bound [8] for z —~. By
substitution of these solutions into the fluid equations, we

find the auxiliary conditions

kj+c, (k' q, ) =0—, j=q, h,

with the requirements Req~ & 0 and Reqh & 0 to ensure
boundedness of the solutions far from the front.

Boundary conditions are given by the conservation laws

at the front. Continuing to treat the front as a discon-
tinuity, we restrict our analysis to wavelengths long com-
pared to the thickness of the front. For a planar discon-
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where gh is the effective number of helicity states in the
hadron phase, 0~ a~1, and a=1 corresponds to the
ideal situation. A similar prescription is used in classical
bubble dynamics theory to constrain the net mass flux

across a liquid-vapor interface [10].
The first boundary condition, from Eq. (7), gives linear

perturbations in the pressure on each side of the inter-
face,

where Fz is the energy flux, and velocities are with

respect to the front.
The energy flux for a given amount of supercooling of

the quarks is determined by the microscopic physical pro-
cesses leading to hadronization at the interface. The
maximum energy flow would occur if the interface
behaved as a blackbody. For the low-velocity solutions
we are concerned with, the exact form of the energy
current will prove to be unimportant. Following Refs. [5]
and [9] we take the energy fiux to be proportional to the
net blackbody energy flux between phases:
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where rt=—g„/gt, is the ratio of the effective number of helicity states between the two phases, p—= 3a/4rt, and 8= I+ I/v,
(=4 for a relativistic gas). The final term represents the forces due to surface tension; o is the surface mass-energy
density of the interface, and g is the amplitude of small oscillations of the interface measured normal to the unperturbed
interface. The spatial derivatives in g represent restoring forces of the distorted surface, while the time derivatives arise
from the inertia of the interface.

The second and third boundary conditions, from Eqs. (6) and (8), give perturbations in the energy current on the two

sides of the interface,
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The energy current is unaffected by the presence of constant surface tension [11].
The fourth boundary condition is obtained by requiring continuity in the transverse velocity across the interface:

vv, + i'v =r'/I„+ vg
BX BX

Perturbations of the front are described by (=(Oe't"' ' . The four boundary conditions, Eqs. (9)-(l I), give four
equations in the five unknowns A, 8, C, (0, and co; the indeterminance of one unknown, say, A, corresponds to the choice
of overall scale. %'e obtain the dispersion relation
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~here 0,:——in, and we have neglected corrections to the coeScients of higher order in the velocities. Numerica~ so~u-
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tion shows that Eq. (12) has real roots 0, such that
0 «k. In order to obtain approximate analytical expres-
sions, we seek solutions in this limit. In this regime, we
see from Eq. (5) that qv=k and qr, = —k. We obtain
the secular equation

r
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We estimate the average front velocity as vv -L/tH. The
time scale for the instability is then
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This equation is identical to the dispersion relation for
small perturbations of a deflagration front propagating in

a classical incompressible gas, with the enthalpy taking
the role of the mass density [8]. Below a critical wave
number k„, one of the two roots of Eq. (13) is positive
since p:&'q—/vq =wq/wi, ) I (for p ( I, as in the conver-
sion of hadrons to quarks, the front is always stable).
Above k,. =(p —l)wvvv/cr, the system is stabilized by
surface tension. The positive root Q~ grows monotoni-
cally with k for small k, and drops to zero at k„. The in-

stability grows over a time scale
r
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Note the appearance of m/wv as the basic length scale.
We have in mind the following picture of the cosmolog-

ical quark-hadron phase transition. The Universe super-
cools below a critical temperature and nucleates bubbles
of hadrons which begin to grow at the expense of the
quarks. Depending on the size of the nucleated bubbles,
their initial growth is stable or unstable. If initially
stable, the growing bubbles become unstable when they
reach radii —I/k„all modes with k (k„are unstable.
Above a radius I/ko, the most unstable mode begins to
evolve. For the low degrees of supercooling considered
here, p= wg/wi, =gv/gh =3—, and the most unstable mode
grows on a time scale ro=2 5rr/wvvv, at a c. haracteristic
wave number ko= I. Iwvvv/o'=0. 55k, .

The bubbles will be the least unstable if the phase tran-
sition occurs close to equilibrium. A quasiequilibriurn
phase transition lasts a time tH —10 s. The extent to
which the phase transition is dynamic is determined by
the characteristic spacing of nucleated hadron bubbles, L.

Since 0+ does not have an imaginary part, perturbations
of the front are amplified without propagating along the
front.

The evolution of the system is governed by the behavior
of the mode with the shortest growth time scale. This
mode is of wave number

1/2

where a reasonable estimate for cr/wv is —I fm.
For the instability to be dynamically relevant ip must

be less than the expansion time, and bubbles must be
larger than =I/ko over this time scale. Both of these
constraints are satisfied as long as L/(1 cm) &0.3(a/w~)
fm '. For a spacing L=I m (100 m), the expanding
bubbles become unstable on a time scale rp-2&10 ' s
(-2X IO ' s) at radii above —10 cm (-10 ' cm).
Typical values of L considered in calculations of inhomo-
geneous nucleosynthesis are 1-100 m [3]; for values of L
much less than 1 m, diffusion of protons and neutrons
after the phase transition destroys baryon concentrations
before nucleosynthesis. However, we see that bubbles nu-

cleated on a scale above —1 rn become unstable very ear-
ly in the phase transition.

In obtaining these estimates, we have made the most
conservative assumption of quasiadiabatic bubble growth.
During the initial stages of the phase transition, however,
before the released latent heat is therrnalized and quasi-
static expansion begins, front velocities could be consider-
ably larger than later in the phase transition, and the in-

stability correspondingly more potent. For example, with

v~ =0.01c and cr/wv = I fm, expanding bubbles would be-
corne unstable on a time scale of —10 ' s, at a radius
—10 cm, even for a very small nucleation scale.

In summary, we have established the hydrodynamic in-

stability of low-velocity deflagration in a relativistic gas,
and have estimated the time scale of the instability.
While the front is unstable to long-wavelength perturba-
tions, the surface tension acts to stabilize the front at
shorter wavelengths. Bubbles separated on scales of in-
terest in calculations of inhornogeneous nucleosynthesis
are unstable on time scales much less than the duration of
the phase transition. The instability can begin to evolve
only when a bubble reaches a size comparable to the un-
stable mode of shortest wavelength. For a bubble separa-
tion of 1 m, for example, bubbles larger than —10 cm
are unstable on a time scale —10 ' s.

The consequences of the instability cannot be fully as-
sessed within the linear analysis. The instability could be
controlled by nonlinear effects, as in some cases of terres-
trial combustion [12]. If nonlinear stabilization occurs in

the early Universe, bubbles would grow approximately
spherically. On the other hand, bubbles may disintegrate
as they propagate, causing spherical bubbles to persist
only below a certain size; the most extreme case would be
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the dissolution of the phase-separated medium into
"foam. " A sufficiently small bubble separation at the end

of the phase transition would prevent baryon concentra-
tion effects, if they occur, from persisting until nucleosyn-
thesis.

Freese and Adams [7] have suggested that if bubbles

grow to a size comparable to a neutrino mean free path,
radiative transport by neutrino conduction may dominate
over hydrodynamic flow, and bubbles could become un-

stable to "dendritic growth. " The hydrodynamic instabil-

ity discussed here applies to smaller bubbles, and may
prevent bubbles from becoming large enough for such a

thermal instability to function.
It is a pleasure to thank Gordon Baym for many help-

ful discussions and Richard Epstein for comments on the

manuscript. This work was supported in part by Nation-
al Science Foundation Grant No. DMR 88-18713.

"' Current address.
[I] E. Witten, Phys. Rev. D 30, 272 (1984); E. Farhi and R.

L. JaAe, Phys. Rev. D 30, 2379 (1984).
[2] J. H. Applegate and C. J. Hogan, Phys. Rev. D 31, 3037

(1985); J. H. Applegate, C. J. Hogan, and R. J. Scherrer,
Phys. Rev. D 35, 1151 (19S7); C. R. Alcock, G. M. Full-
er, and G. J. Mathews, Astrophys. J. 320, 439 (1987); G.
M. Fuller, G. J. Matthews, and C. R. Alcock, Phys. Rev.
D 37, 1380 (198S); R. A. Malaney and W. A. Fowler,
Astrophys. J. 333, 14 (1988); 345, L5 (1989); H. Kurki-
Suonio and R. Matzner, Phys. Rev. D 39, 1046 (1989).

[3] H. Kurki-Suonio, R. Matzner, K. Olive, and D.
Schramm, Astrophys. J. 353, 406 (1990).

[4] See, e.g. , M. Gyulassy, K. Kajantie, H. Kurki-Suonio,
and L. McLerran, Nucl. Phys. B237, 477 (1984); H.
Kurki-Suonio, Nucl. Phys. B 255, 231 (1985); K. Kajan-
tie and H. Kurki-Suonio, Phys. Rev. D 34, 1719 (1986).

[5] J. Miller and O. Pantano, Phys. Rev. D 40, 1789 (1989).
[6] G. Andrews, D. Bradley, and S. Lwakabamba, Combust.

Flame 24, 285 (1985).
[7] K. Freese and F. C. Adams, Phys. Rev. D 41, 2449

(1990).
[8] See, e.g. , L. Landau and D. Lifshitz, Fluid Mechanics

(Pergamon, New York, 1959).
[9] O. Pantano, Phys. Lett. B 224, 195 (1989).

[10] See, e.g. , T. Theofanous, L. Biasi, H. S. Isbin, and H.
Fauske, Chem. Eng. Sci. 24, 885 (1969).

[I I] This result follows from the jump conditions for a domain
wall obtained by J. Ipser and P. Sikivie, Phys. Rev. D 30,
712 (1984), and K. Maeda, Gen. Rel. Grav. 1$, 931
(1986). The contribution to the energy current due to
surface tension is the projection of D„S""onto the space-
time hypersurface defined by the phase boundary, where

D„ is the derivative operator associated with the induced
metric h„„=g„,—n„n„n„ is a unit vector normal to the
hypersurface, and S„, is the stress tensor of the phase
boundary. For a domain wall, as considered here,
5„.= —oh„,. Since D„h'~=0 by the definition of D„,
D„S"'=0for constant o.

[12] Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and
G. M. Makhviladze, The Mathematical Theory of Com
bustion and Explosions (Plenum, New York, 1985).

2428


