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Asymptotics of Reflectionless Potentials
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Analytic reflectionless potentials ca2(r) are constructed for the one-dimensional equation e2d q/dr 2

+t02(r)q 0. Unlike generic potentials which reflect waves with amplitudes of order exp( —1/e) as
0, these potentials have reflection coefficients which are identically 0. It is shown that in the

reAectionless case the adiabatic perturbation or iteration does not converge absolutely or terminate at
some order. Since exact integrability is less restrictive than having a reflectionless potential, the case
studied also shows that integrability does not imply convergence of the approximation methods used.

PACS numbers: 03.40.Kf, 03.20.+i

H-
2 [p'+ra'(et)q'l, (2)

where p is the momentum canonically conjugate to the
coordinate q, r et, and t denotes time. The behavior of
solutions of Eq. (1) in the limit e 0 has been a subject
of considerable research —it describes the semiclassical
limit of the quantum-mechanical problem, as well as the
adiabatic limit of the harmonic oscillator with a frequen-
cy varying slowly in time. The generic behavior for e 0
is well known: The reflection coefficient (or, in the case
of the classical harmonic oscillator, the change in the adi-
abatic invariant from —~ to + CC ) varies as exp( —c/e),
where c is a constant of order 1 [1].

A phenomenon which accompanies such behavior is a
divergence of perturbation theory or other, iterative pro-
cedures [2-4]. We have recently demonstrated [5] the
universal character of such divergences in Lie perturba-
tion theory and in an adiabatic iteration method [3] for a
broad class of Hamiltonians. The fact that divergences
and nonadiabatic effects [which in the case of Eq. (1) in-
volve the generation of reAected waves] occur together in
the generic case has prompted the speculation that if for
Eq. (1) a reAectionless potential could be found, then
perhaps perturbation or iteration methods would converge
or terminate at some order [3].

The first goal of this paper is to show how to construct
a class of reflectionless potentials for Eq. (1). We also

The one-dimensional equation

2d q +ra'(r)q =0,i2

with tu2 real and positive on the real r axis, analytic and
nonzero in a strip about it, and approaching constant
values as r ~ ~, is applicable to a number of interest-
ing physical problems. If q is a wave function, Eq. (1)
can be recognized as the one-dimensional time-inde-
pendent Schrodinger's equation for the above-barrier
reflection problem. The above is also the equation of
motion for the one-dimensional harmonic oscillator with

the Hamiltonian

e'p+ ro'(r )p 1/p' =0. — (3)

(Here we denote d/dr by an overdot. ) The connection
between Eqs. (1) and (3) is seen by writing the exact
solution to Eq. (1) in the form

r

t t
q(2(r)=p(r)exp ~ —' dr'p '(r') (4)

Substituting Eq. (4) into Eq. (I) and differentiating then
gives Eq. (3). Conversely, as shown in Ref. [9], any two
linearly independent solutions q ~ q of Eq. (3) determine p,

p(r) -~ (ea) ']A'q('+8'q22

~ 2[8 '8' —(ea) '] 'I'q q ] 'I' (s)

Here a is the constant Wronskian, A and 8 are two arbi-
trary complex constants, and we are free to choose any

point out why conditions given previously are insufficient

[3,6]. To one such potential we apply two distinct
mathematical procedures —the first is Lie perturbation
theory, and the second, a WKB-type iteration procedure
[7]. We show that neither of the procedures converges
absolutely, even though the potential is reflectionless.
This conclusion precludes the possibility of making a gen-
eral link between reflections and divergences. More gen-
erally, since the system given by Eq. (2) is exactly inte-
grable even for a generic choice of ta2(r), as shown

below, we are able to conclude that integrability does not
imply absolute convergence of these approximation
methods. (By integrable we mean that in the phase space
extended to include t and its conjugate momentum, the
system has two independent first integrals in involution. )

Before we proceed with the construction of reflec-
tionless potentials, we consider in some detail the problem
of the classical harmonic oscillator for which the Hamil-
tonian is given by Eq. (2). This system has been studied
extensively in Refs. [8-10]. In addition to the obvious in-

variant H(q, p, t) —H, there exists an additional invariant
J=

2 [p q +(pp —epq) ], where p is any solution of
the equation
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combination of signs.
We denote by S the strip about the real r axis where

ro (r ) is nonzero and analytic, and for definiteness we set
co (~~)=I. (Note that 5 is a simply connected do-
main. For the purposes of the next paragraph it is only
necessary that ro be analytic in S.) In order to insure
the validity of the perturbation procedures to be applied,
we take the changes in co to occur over an interval of t of
the order of I/e or less. This is a stronger requirement
than f+ (c—o (t') —I (dt'& ~ which is needed for the
proof we now give.

We turn to Eq. (3) and impose the (obviouslypermissi-
ble) requirement that as r —~, p(t) co

' (r) =l.
Then a bounded, real, positive solution, analytic in some
finite region near the real t axis, must exist for Eq. (3).
This can be demonstrated as follows: Given the condi-
tions on co stated above, if we pick two linearly indepen-
dent vectors at some to 6 S [consisting, for example, of
q(to) and q(ro)], Eq. (1) will have two linearly indepen-
dent solutions q~(t) and q2(r ) which satisfy the two sets
of initial conditions at to, and which are analytic for all

t 6 S. Furthermore, q~(t) and q2(r) are bounded for
all real t [11]. Since we can always choose the two sets
of initial conditions to be real, and hence the solutions to
be real on the real r axis, all that remains to complete the
proof is to show that p(t) is never 0 for real t. This is

not hard. First, q~ and q2 cannot be simultaneously 0, for
if they were, then a 0 for all t, and the solutions would

not be linearly independent. So, let us suppose that
at some r r~, p takes on the value 0. From Eq. (5)
this requires A q~+B q2 =+ 2[8 B —(ea) ]' q~q2.
Upon squaring this expression we are left with (A q~
—B q2) —4(ea) q~qz &0, which is a contradiction,
since we can always choose q~, q2, their derivatives, and

hence a real. Therefore, p which possesses all the proper-
ties stated above exists. Thus the invariant J exists, and

the Hamiltonian system is exactly integrable (regardless
of the value of e). By a canonical transformation to the
action-angle variables where J plays the role of the action
[9], the Hamiltonian can be brought into the form

K(J,4) p J.
We are now prepared to return to Eq. (1) and address

the question of reflections. This problem is conveniently
described in terms of the asymptotic behavior of p(r ) as

+~. By assumption, lim, — p(t) =1, that is, as
—~ the solutions given by Eq. (4) represent plane

waves. As shown in Ref. [10], then the asymptotic be-
havior of p as r + is

p(r ) [cosh(b) ~ sinh(b)sin(2t +&)] . (6)

Here 8 and P are real parameters. Their values, as well
as the choice of sign, depend on the functional form of
co(t). [We remark here that is is easy to generalize our
calculation to the case r0( —~) =K~, co(+~) =K2,
where K] and K2 are positive real constants. We then
take p( —~) =K~ '1 and p(+~) as given by Eq. (6)
multiplied by K2 ' .l
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From Eq. (6) it is now clear that q~ q(r) as given by
Eq. (4) do not, in general, represent plane waves as

+ ~- [This is most easily seen by noting
Iqi(t) I' and Iqz(r ) I' are oscillatory functions of time
not constants. ] It is therefore not sufficient for a
reflectionless potential to simply require that the solution
be of the form q(r) =p( t)exp[(i/e) f' dr'—p (r')],
as proposed in Refs. [3] and [6]. (The same flaw invali-
dates a proof given in Ref. [2].)

We give a prescription for the construction of
reflectionless potentials: Choose any positive p(r) which
is analytic and nonzero in a strip about the real r axis,
which satisfies e p p & 1 for all real r, and for which
lim, + p(t) =1. (It is the last property that gives
6=0 and insures that the solution q(r) =p(t) exp[(i/e)
&f ' dt'p (r')] is a wave propagating purely in one
direction at both r —~ and r +~.) Substitute
this p(r) into Eq. (3) and solve for co (r) to get a
reflectionless potential which is analytic in a strip about
the real r axis. For the harmonic oscillator (2), the same
condition makes the change between the final and initial
values of the adiabatic invariant identically zero.

We now consider an example of a reflectionless poten-
tial which is also well known in soliton theory [6,12). We
take p(r ) = [(I + e tanh t )/( I + e )] '1 which gives

co(t ) (1+26'"sech t ) (7)

[For another example, less tractable analytically, see Ap-
pendix D of Ref. [51. This example is interesting because
p(t) does not depend on e. ] From Eq. (7) it is evident
that as r + ~ we have p(t) =co '~ (r ) =1. It is

worth emphasizing here that whereas the Hamiltonian
(2) is exactly integrable for a very wide class of functions
cu(t ), only a subset of these are reflectionless. Thus, both
plots in Fig. I are numerical solutions of Eq. (3), with

p( —~) =1 in both cases (for numerical purposes —~ is

taken to be —100). The top plot describes p(t) for a

generic potential that generates reflections, co (t) =(r
+2)/(r + I ). We have deliberately chosen e to be large
(@=0.6) for this curve, in order to make the oscillations
for large r clearly visible. The bottom plot, on the other
hand, shows the solution p(r) for cu(t) given by Eq. (7)
(for e =1). We call attention to the striking difference in

the asymptotic behavior of p(t, e) for large t in the gen-
eric and reflectionless cases.

We now apply Lie perturbation theory to the Hamil-
tonian (2), with ro(t) given by Eq. (7), and show that
neither the fact that the system is integrable nor that the
potential is reflectionless causes the perturbation expan-
sion to converge absolutely. We rewrite the Hamiltonian
in the form H =F1+ e1(ai/2~0) sin28, where 1 and 0 are
the action-angle variables for the case a=0. Expanding
the explicit e dependence (not multiplying t) to O(e )
gives

11=1+e21sech2t —e 1sech r tanhr sin20+O{e ) . (8)

The Hamiltonian (8) is amenable to the Lie method
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w(I, O, t) = g
n Ok 0

(9)

For the Hamiltonian (8), it can be easily shown that

wik w2k=0 for all k. For n 3 we get

which is described, for instance, in Ref. [13]. Here we

follow the notation of Ref. [5] (where a brief description
of the method is also provided). In our example, the gen-
erating function carries the expansion

( 1)k+I
2k jk ( j)k dr k (er+e —r)3

(10)
From Eq. (10) it can be seen that in the limit k

w3k also tends to infinity because of derivatives with

respect to r, even for arbitrarily small e. For compact-
ness of the formulas we demonstrate this fact at i =0;
the extension to arbitrary r is straightforward. It can be
shown that at r =0 we have the identity

dk er e
—r

drk (e'+e ')', ,

2k+i
( —I ) " ' (k+2)! 1—

k+3

0, k even,

g(k+3), k odd,2k+3

where ((k) is the Riemann zeta function. For k ~ we can replace (I —2 " )g(k+3) by 1. This then is in agree-
ment with the Cauchy-Hadamard formula,

&kf(rO)
lim sup k! t)r R

where f is an arbitrary function and R is the distance from ro to the nearest singularity of f, since the singularities of
(e' —e ')/(e'+e ') nearest to r =0 are at r = + ix/2 (Th.e Cauchy-Hadamard formula can be used to obtain easi-

ly the dominant behavior of dk[(e' —e ')/(e'+e ') ]/dr for any r )Henc.e,
r

e2+kw ~ ( I ) (k —1)/2 ~ +
+ (k+ 2)16I (i2)

and so for n =3 the sum over k in Eq. (9) diverges. Con-
sequently, this expression for w, with this ordering of
sums, is divergent.

More importantly, Eq. (12) shows that no expansion of
w in terms of w„+~ k can be absolutely convergent. Thus

77TTTTTT

the best that one can hope for is to rearrange the terms in

the sums in Eq. (9) to get conditional convergence. It is

questionable, however, that such an answer, if it existed,
would be meaningful, since any additional rearrangement

would then produce a diff'erent answer [14]. In particu-

lar, for any coefficient multiplying Ie', as m varies over

even numbers, we would be able to get any number

desired.
Finally, we turn to an iterative procedure for solving

Eq. (3) [5,7]. (To establish contact with Ref. [7], our p„
(n)should be replaced by 0 " .) The iteration formula is

1.0— p. +i =[ro'+(1/p, )e'p. ] (i 3)
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Typically, po=m '~. To see whether this procedure

converges to the exact solution, p,„, in the reflectionless

case, we linearize Eq. (13) about p,„and examine the
linear stability of this fixed point. [For specificity, p,„
and co can be taken to be the ones corresponding to the

example of Eq. (7). The result obtained, however, is in-

dependent of this choice. ] Writing p„p,„+b„, to first

order in b„, Eq. (13) becomes b„+ ~
=Gb„, where G is the

operator

FIG. l. p(r) vs r for a potential that generates reflections,
rrr (r) (r ~+2)/(r 2+1) (top plot), and for a reflectionless po-
tential, rrr~(r) =1+2e2sech2r (bottom plot). The values of e
are 0.6 (top) and I (bottom). For clarity the top curve displays
p(r ) +0.2.

1 2
~2 d2

ro pex) pex
dT

(i4)

To see the eigenvalue spectrum of G, we examine the ei-

genvalue equation Gu&=A. u&, with the boundary condi-

tions that u is bounded at r = ~ . Then, since p,„ is
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positive, and m —p,„ is bounded from above on the in-

terval ( —~, +~), this is a Sturm-Liouville problem
where the eigenvectors form a complete set on the inter-
val r E ( —~, +~), and the eigenvalues are real and un-

bounded from above [11]. Consequently, in the space of
functions of r, p,„ is a linearly unstable fixed point. %e
note that this statement is independent of the asymptotic
behavior of p,„as i +~. Thus the procedure diverges
regardless of whether the potential cu is re[lectionless or
not, provided our starting point is not on the stable mani-
fold (the set of functions of r which can be expanded in

terms of ui, with only (k~ & I contributing).
We have carried out explicitly the first five iterations of

Eq. (13) for p,„(r) and cu(r) given by Eq. (7), with

pu(r ) =to 'l (r ). At e =0.53, for example, (p„(0)
—p,„(0)) takes on the values 0.0264, 0.0131, 0.0105,
0.0108, and 0.0116. The asymptotic nature of the
iterants is clearly visible, and the optimum truncation
here occurs at n =2. %e have performed similar calcula-
tions for values of e between 0.01 and 1, and observed
the same general behavior for e &0.19 (for smaller
values of e more iterations are needed to see the turn-
around). The algebraic operations on functions were per-
formed by the symbolic manipulation routine MATHEMA-

TICA.
In summary, we have given precise conditions for the

construction of a large class of reflectionless potentials
to (r ) which are analytic in a strip about the real r axis.
To one such potential, we have applied adiabatic pertur-
bation theory and shown that the perturbation series is

not absolutely convergent. Similarly, we have found that
a WKB-type iteration procedure is divergent. Thus the
asymptotic character of the expansion (or the iteration) is

a mathematical artifact of the method used, not related
either to itegrability or to the potential being reflec-
tionless.
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