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Boson Localization and Pinning by Correlated Disorder in High-Temperature Superconductors

David R. Nelson

Lyman Laboratory of PhysicsH, arvard University, Cambridge, Massachusetts 02I 38

Y. M. Yinokur "

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
(Received 12 December 1991)

The physics of Aux lines in the cuprate superconductors pinned by columnar defects is mapped onto
boson localization in two dimensions. The theory predicts a Bose glass phase with an infinite tilt
modulus and zero linear resistivity, as well as an entangled Aux liquid. %e describe correlations and
transport in these phases, and propose a scaling theory for the irreversibility line which separates them.

PACS numbers: 75.10.3m, 67.40.0b

Understanding assemblies of flux lines in the cuprate
high-temperature superconductors requires new ideas and
phases, including entangled flux liquids [1] with a linear
resistivity, and, if pointlike disorder is important, a possi-
ble vortex glass phase [2] whose nonlinear resistivity may
be estimated via the collective pinning theory [3]. These
theories have been stimulated by a number of striking ex-
periments, including transport measurements [4,5] which

suggest an underlying phase transition associated with the
"irreversibility line" [6] in these materials.

Recently, Civale et al. [7] have reported greatly en-
hanced pinning in YBazCu307 crystals with long aligned
columns (diameter co = 50 A) of damaged material, pro-
duced by energetic Sn-ion radiation. These columnar
pins produce, as well, a remarkable upward shift of
several tesla in the irreversibility line. Below this line,
but above the irreversibility line of the undamaged ma-

terial, transport is presumably dominated by the correlat-
ed disorder embodied in the columnar pins, whose linear
dimensions (15 pm or more) are comparable to the sam-

pie thickness. It was recently suggested [8] that flux lines

under these circumstances could be understood via a

mapping onto two-dimensional boson localization [9],
similar to an analogy proposed earlier for vortices in pure
systems [1].

In this paper, we show that this mapping predicts a
low-temperature "Bose glass" phase, with flux lines local-
ized on columnar pins, separated by a sharp phase transi-
tion from an entangled liquid of delocalized lines. Pin-

ning in the Bose glass leads to an infinite tilt modulus,

while disorder in the liquid shows up as a ridge of scatter-
ing observable via neutron diflraction [10]. We describe

transport in these phases and propose a scaling theory for
the current-voltage characteristics near the transition. A

possible "Mott insulator" phase, in which both the tilt
and compressional modulus are infinite, is also discussed.

We start with a simple model free energy FN for N flux

lines in a sample of thickness L, defined by their trajec-
tories [re(z)] as they traverse a sample with columnar

t

pins and magnetic field aligned with the z axis perpendic-
ular to the Cu02 planes,

'2
-L dr, (z) eg

FN= —,
'

e~ g dz+ —,
' g V(tr;(z) —r, (z)t)dz+g Uo(r;(z))dz.

J dz

Here, e~ is the local tilt modulus (e~ & e~, the line tension,
due to anisotropy), V(tr; —rjt) is the interaction poten-
tial between lines, and UD(rj) represents a z-independent
random pinning potential. We model Uo(r) for simplici-

ty by a random array of identical cylindrical traps of
average spacing d passing completely through the sample
with well depth per unit length Uo and eA'ective diameter
bo (ho=min[co, g]), with Uo(r)Uo(r') =2&)8 (r —r'),
where A~ = Uobo/d and the overbar represents an aver-

age over disorder. Equation (1) is the simplest model
which captures the physics of boson localization —inter-
actions, in particular, are essential to obtain a sharp
phase transition [9]. In our estimates of transport in the
Bose glass phase we will suppress all factors of order uni-

ty. Quantitative accuracy would require Uo«e~, which

allows a simple description of vortex elasticity via the
term —,

' e~(dr/dz) . Nonlocal interactions will be dis-

cussed below.

The classical statistical mechanics associated with (1)
is equivalent to the quantum mechanics of interacting bo-

sons in two dimensions with a random static potential
Uo(r). The partition function, in particular, is deter-
mined by the ground-state energy of a fictitious quantum
Hamiltonian [1,8]. We assume that each flux line spends

most of its time near one of the attractive columnar pins,
so that this boson Hamiltonian can be replaced by a

tight-binding model defined on a lattice of sites deter-
mined by the pin positions [Rt] in a plane perpendicular
to z. The grand canonical partition function associated
with (1) is then Zs, tx:exp( —EoL/ktt T), where Fo ls the

ground-state energy of the tight-binding Hamiltonian

H = —p g a, a, —g t;~ (a;"a, + a~ a; )
j i&j

+ Voga, 'a, a,-'a, . (2)
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Here, p ~H —H, , i is a chemical potential which fixes the
Aux-line density, aj and aj are boson creation and annihi-
lation operators at site Rj, Vo& 0 is a typical interaction
energy for two lines on the same site, and [I I]

—ciF,;J
T

g-- CX
Uetr

exp (3)
(F. /T)'"

with F.;~ =(Udice~)' dj the hopping matrix element con-
necting sites i and j, separated by a distance d;J. The pa-
rameter c] is a dimensionless constant of order unity and
Udr is an effective binding energy renormalized by
thermal fluctuations [8]: U, rr

=Upf(T/T*), with T*
=(2eibpUp) 'I, f(0) = I, and f(x) =x e " for large x.

The physics of Eq. (2) was discussed by Fisher er al. in

the context of boson localization [9]. The three phases
found by these authors and their meaning for flux lines
are illustrated in Fig. 1. In the entangled liquid or
"superAuid" phase, Aux lines are delocalized and hop
freely from one columnar pin to another as they traverse
the sample. All vortex trajectories "diffuse" as they
wander across the sample, 1im.- ((r~ (z ) —

r~ (0) ( )
=2Dgz, where the brackets denote a thermal average.
Both the tilt modulus c44 and bulk modulus ci~ are finite.
As discussed further below, the "superfluid density" in

this phase is proportional to c44 . The flux lines are local-
ized to the vicinity of a few columnar pins in the Bose
glass phase, which defines a localization length via
lim: ((r~(z) —rI(0)( l =I&. Since the superfluid den-
sity vanishes in a Bose glass, the tilt modulus is infinite—the external field must be tipped a finite critical angle
8„=8((Upbpnp/d c44) 'I ) away from alignment with
the pins before the average flux-line direction changes
significantly [I I]. Here, np is the Aux-line density and c44
is the tilt modulus in the absence of pins evaluated at the
relevant wave vector. The shear modulus e66 vanishes in
both of these phases. The last phase occurs at low tem-
peratures when there is one fluxon localized on every
pin —the Mott insulator. The fluxon density will remain
locked at the pin density for a finite range of external
field strengths. Hence, both c44 and c~i are infinite. %e
defer further discussion of the Mott insulator [I I], and
concentrate now on the flux liquid and Bose glass phases,
whose transition line TaG(H) we identify with the ir-
reversibility line of Civale er al. [7].

As T TgG from below, the localization length
diverges, I& —I/(Tao —T) ', with v&~ I [9]. There is
also a correlation length along the z axis, Ii-I~/Dp,
which is the distance along z it takes a flux line to
"diffuse" across a tube of diameter the localization
length. Note that Do is a short-distance diffusion"
constant —the macroscopic large-scale parameter Dg
vanishes in the vortex glass. The simplest scaling hy-
pothesis is that Dp remains finite at TaG, so that [9]
Ii —I/(TaG —T) '" with vi =2v~.

To determine how disorder aAects the flux liquid phase,
we use a hydrodynamic approach [12], and find that
the Fou rier-transformed structure function, 5 (q~, q: )

C4

Flux Liquid Bose Glass Mott [nsulator

{a) (b) (e)

F|G. 1. Schematic of Aux lines attracted by columnar pins in

the Aux liquid, Bose glass, and Mott insulator phases.

=&(bn(q~, q )('), is [I I]

s(q&, q-) = Tnoq ~2 2

c44(q, q )q +c~~(q&, q )q

+a(, b(q-),
c( ) (q~, o)

(4)

where c44(q) and cii(q) are nonlocal elastic moduli. In
addition to the contours of constant scattering expected
for neutron diffraction off flux liquids in clean systems
[I], there is now a sharp ridge of intensity running down

the q& axis due to the columnar pins. This spike mea-
sures how well the vortex lines track columnar pin trajec-
tories, and should show up as a "central peak" in a q-
scan.

We now consider long-wavelength distortions and ask
for the singularities in c~~ =—c~~(0) and c44 —=c44(0) as
T TgG from above. Using the boson representation for
Eq. (I), and integrating out density fluctuations, leads to
a free energy expressed only in terms of the boson phase
e(r, z) [8],

F= —'T np d r dz[c44'(V~8( +c/J'(a e)'],
which sho~s that c44

' is proportional to the boson
superfluid density. Taking over the Josephson scaling
analysis of Ref. [9], we find that c~~ =Tnpl~/Ii and
c44 =Tnol((, where l~ and I(( are liquid-phase analogs of
the Bose glass correlation lengths discussed above. The
assumption that v((=2v~ means that ci~ remains finite at
the transition, while c44 diverges, c44-I/(T —Tao) '.
The wave-vector-dependent tilt modulus takes the scaling
form c44(q&, q-) =Iiqi(q&l&, q-li) with @(O,y) —I/y for
small y. Using this result, we find that the contours of
constant scattering near the origin in Eq. (4) (given by
q cx'q&) are "pinched" down so that q- ~q~ as T

TBG.
+

The dynamics of the Bose glass is determined by the
competition between the 2D array of columnar pinning
centers and 3D thermal fluctuations of vortex lines. A
detailed picture can be obtained in the region T & T*,
B & B*=%p/d, where each vortex is localized on one
columnar defect and the pins outnumber the vortices.
For Y-Ba-Cu-0 we estimate T*=60-80 K and 8* may
be of order several tesla depending on the radiation dose,
so this is a sizable regime. The boson mapping then
reduces the single vortex dynamics to a problem of hop-
ping conductivity for 2D localized bosons with hopping
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probabilities t;j. The electric field in the usual hopping
conductivity problem corresponds to the in-plane current
density J in vortex dynamics, whereas current density and
conductivity from hopping map, respectively, onto vortex
velocity (i.e., voltage) and resistivity in vortex Bose glass
dynamics. Upon noting that the inverse sample thickness
plays the role of temperature in the boson representation
[I], one can reproduce for Bose glass dynamics the rich
variety of hopping conductivity phenomena in semicon-
ductors [13] by transcribing the proper quantities. It can
be shown that a current J, applied perpendicular to the
CuOq planes is equivalent to a fictitious "magnetic field"
acting on the bosons. We discuss below only the most
characteristic cases leaving detailed consideration for a
subsequent paper [11].

The critical current in this strongly pinned Bose glass is

just J„=cUp/@pbp. When J~ & J & J„where J~ =cUp/
@Od, the flux motion occurs via a thermally activated
"half loop" configuration with energy E*= (el) 't Upi /

ft, where fL =c 'J@p. The length of the critical un-

bound line segment is I*= (Ups~)
' /fL. This im-

plies a nonlinear current-voltage characteristic, V

-exp[ —(Et, /T) J~/J], with Et, =d(e~Up) ', as found re-

cently by Konczykowski et al. [14]. Dispersion in vortex
binding energies, due to interactions, nearby pins, etc. ,
will change this result only in the limit B«8* [11].

For J & J~ the transverse displacement of the liberated
vortex segment exceeds the mean distance between de-
fects and the transition of the vortex 1ine from one rod to
another takes place via a thermally activated double kink

configuration which throws a vortex segment onto an ad-
jacent columnar defect in strong analogy to dislocation
motion over a (random) Peierls potential. Samples thin

enough that the dispersion of energy levels y associated
with (2) is negligible (Ly & Et, ) will now exhibit a
nearest-neighbor percolative hopping conductivity with

V/J -exp( c2Et, /T), w—here the constant c2 can be
found explicitly from percolation theory [13]. Vortex
motion when B&&B* in this regime is determined by
dead ends in the percolation network [15], and nonmono-

tonic current-voltage curves will result [I ll.
The dispersion of flux binding energies is essential for

J & J~ and L & L~ =Et/y. We now have variable-range

hopping conductivity of the most weakly found flux lines,
with all lower energies filled [13]. We assume that the

repulsive intervortex interaction effectively excludes mul-

tiple occupancy of pinning sites. Vortex motion then re-

quires hopping (via double superkink formation) to a dis-

tant defect with nearly the same energy, since there is a
large (-L) barrier to hopping to nearby higher-energy
states in a sufficiently thick sample. At very small

currents for L ] & I & ~ Ohmic Mott variable-range hop-

ping (VRH) conduction takes place: V/J-exp[ —(L/
Lp) 't ], where Lp=T g(p)/8~Up, and g(p) is the density
of states obtained from (2) evaluated at the energy of the

highest occupied state. Stronger currents reduce the typi-
cal jump distance r&, which is now determined self-
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consistently from ri =[g(p)ft r j ] ' (ft r~ is the fall in

vortex potential energy over a typical jump r~). This
gives r~ =[fLg(p)] ' and determines a current-
dependent hopping probability —exp( —r &Et, /dT) T.he

transition to this non-Ohmic VRH behavior with

current-voltage characteristic V/J-exp[ —(Et;/T)(Jp/
J) ' ], where Jp = c/@ pg( p)d, occurs at JI =cEi/
@pLd « Jp. When J & Jp =J ) [Upg(p)d ] ', transport is

dominated by thermal activation from a single rod as dis-
cussed above. Note that interactions will lower g(p) (as
in the "Coulomb gap" of semiconductors), but not to zero
provided the interaction range (here, of order X) remains
finite [13].

Inhomogeneity in the z direction can change the Bose
glass dynamics in thick samples, although probably not

above the irreversibility line in undamaged materials.
The kink propagation along the rods may slow down

significantly at large scales with kink velocity decaying
with time as i -t ' ", p &1, possibly leading to dy-
namically entangled vortex configurations [11].

For B»B*,every pin is occupied and the excess vor-

tices go into the interstitial spaces between the random
columnar pins. These vortices will still be localized at
low temperatures by interactions with vortices trapped
on the pinning sites. The critical current is now J,.
= cs'1/@pd np, provided the Larkin-Ovchinnikov length

r, estimated . from 2D collective pinning theory [3] is less
than d. When r,. »d, standard 2D collective pinning for-
mulas for J,. apply. For T* & T & Tao(H), the localiza-
tion length I & + d, the vortex line wanders between
different columnar defects and can be pinned effectively
only by the ensemble of the rods. Flux creep is now

determined by hopping conductivity in a continuous ran-
dom potential [13] with characteristic spatial scale 1&. In

all regions below TaG(H) (but above the irreversibility
line in undamaged materials) we expect the asymptotic
laws V-exp[ —(Jp/J) ' ] in the thermodynamic limit

and V/J-exp[ —(L/Lp) 't ] in finite thickness samples,
as found explicitly for T & T*, B & B*.

By looking for an instability in the hydrodynamic
theory for T & Tao when 8 & B*(Up/r~) we find, follow-

ing [12],

Tao(B) =constx T*(N /dp8) ' (5)

Using the dynamic collective pinning approach of [16]
we estimate the critical current in this regime as J,.
= (ch~' /d&pd )(T*/T) and find a localization length
l~(T) =d(T/T*)'. Note that Eq. (5) follows by setting
l~(T) =np 't . Of course, the true localization length

actually diverges as T Tac. When 8 & 8*(Up/el), we

expect that Tac(8) will be close to the pure system melt-

ing temperature, with J,. —I/T . For T& Tao(8), one

expects the vortex liquid to exhibit the usual linear resis-

tivity [12,16].
A scaling theory of the dynamics near the irreversibili-

ty line Tao(8) is easily constructed. We use the diverg-

ing lengths I& and I~[, and assume that the time scale ~ to
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relax a Auctuation of this size is given by a new critical
exponent z', r —lj. Following [2], the natural scaling
assumption is that the electric field and current are relat-
ed by EI&+= =F+(l~liiJ@p/cT), where F+(x) is a
universal scaling function. Henceforth, we set v[[

=2v~ —=2v'. Above TaG, we expect at small x F+(x)
-x, which leads to a linear resistivity p- (T—TaG)" = . Below TaG, we expect F (x)—
-exp( —const/x ' ) for small x, and a consistent scaling
theory at TBG requires that E-J '+' ~ . The analogous
predictions for the vortex glass model are [2] p-(T
—TvG)"' ' and E-J '+' i, where v and z are the
vortex glass correlation length and dynamic exponents.

Despite its formal resemblance to the vortex glass scal-
ing theory, the Bose glass model differs in a number of
important ways. In contrast to point disorder, which pro-
motes flux-line wandering and entanglement [I],correlat-
ed disorder inhibits wandering and promotes localization.
This difference sho~s up clearly upon considering the
response to a perpendicular field H~ at the transition:
The generalized scaling ansatz EI&+' =F~ (i&isJ@o/
cT,Hil&lii/@o) leads to the prediction that the critical
angle 8, —(TaG —T)3" as T TaG. This upward cusp
in the apparent irreversibility temperature as a function
of angle is clearly evident in the data of Worthington et
al. [17], suggesting that correlated disorder (in the form
of twin boundaries) plays a key role in these experiments.
The vortex glass hypothesis ~ould predict a smooth vari-
ation of the irreversibility line with angle. Such
differences arise because the correlated volume near the
vortex glass transition is assumed to diverge isotropically
[2], while the Bose glass correlations diverge with two an-
isotropic correlation lengths. Note also that the very ex-
istence of a vortex glass is open to question (its lower crit-
ical dimension appears to be close to 3 [2]), while the
Bose glass rests on a firmer foundation.

We note in conclusion that the experiments of Refs. [4]
and [5] may well be affected by correlated disorder, in

the form of twin boundaries [4,5], and possibly forests of
screw dislocations [4]. Recent low-temperature neutron
diffraction experiments [10] and twin boundary pinning
measurements [18] support this view, at least for twinned
single crystal Y-Ba-Cu-0 samples. Simple estimates of
the relative importance of point and correlated disorder
suggest that correlated disorder may dominate at long
wavelengths [11]. A fit of the Bose glass scaling laws
to the data of [4] and [5] yields exponents v'= 1.1-1.6
and z' =6.5-8.0. Precise transport experiments on
untwinned single-crystal samples (to test the vortex glass
hypothesis) and on the columnar pin samples of Civale el
al. [7] (to test the Bose glass hypothesis) would be highly
desirable.
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