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We provide a theoretical basis for Clark’s proposal that for quantum Hall liquids at magic filling fac-

tors, where the longitudinal conductivity is exponentially activated, o, =c2ce

—AlkgT :
8", the prefactor o2, is

proportional to the square of the quasiparticle charge. We also propose that the same experiments un-

cover a remarkable law of corresponding states.
PACS numbers: 73.50.Jt, 05.30.—d, 74.20.—z

When a 2D electron gas is placed in a strong perpen-
dicular magnetic field incompressible quantum Hall
liquids (QHL) are formed at a series of rational filling
factors [1]. The signatures of these QHL states are (i)
pxx— 0 as the temperature T— 0 and (ii) p,, is quan-
tized with value py, =Sy, 'h/e?, where S,, is one of a
hierarchy of possible rational numbers. If one fixes the
magnetic field so that the filling factor is equal to one of
the magic fractions Sy,, and studies px, as a function of
temperature, one finds experimentally that within a well-

0 _ —AlkgT . .
defined temperature range pyx ==pyx€ . Surprising-
ly, on careful analysis of the experiments [2], Clark er al.
demonstrated the amazing fact that P_?x is the same
among pairs of QHL states whose filling fractions have
the same numerator. Extending this analysis, Clark
defined the conductivity prefactor, o, using the formula
60 =pd/l(p2)2+ (S 'h/e?)?] and found that o}y
=¢?/ hq?, where p/q is the irreducible fraction corre-
sponding to Sy,. In an interesting remark, Clark suggest-
ed that these experiments effectively measure the quasi-
particle charge [3] e* =¢/q.

In this Letter, we provide a theoretical basis for Clark’s
interpretation of the experimental results. In addition,
we propose that Clark’s experiments are a manifestation
of a remarkable “law of corresponding states [4],” which
states that regardless of the electronic state, the conduc-
tivity tensor of a 2D electron gas at a magic filling factor
can be parametrized by a single conductivity op. If we
represent the quasiparticles as bosons coupled to a statist-
ical gauge field [5], we shall see below that o, is the di-
mensionless conductivity of these bosons.

The QHL’s form a hierarchy of states in which a con-
tinuous zero-temperature transition can occur between a
parent and daughter state [6,7] as a function of the mag-
netic field strength or as a function of disorder. For ex-
ample, the Sy, =0 (insulating) state is the parent [8] of
the Sy, =1 QHL, and the S,, =1 state is the parent of
the Sy, = Z state. At the transition, the critical conduc-
tance, o, is observed to be finite. We will show that if
certain assumptions are satisfied, ¢ is related to oy,
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via the relation 6%, =(1+62)S5,(0)o%,, where S,(0) is a
universal constant, and 8 is the statistical parameter [9]
of the quasiholes in the QHL state.

Before we embark on the general analysis, it is instruc-
tive to begin by considering a limit of the problem where
the relation between the activated conductance and a
critical conductance can be simply established. Consider
a system of noninteracting electrons in a transverse mag-
netic field in the presence of a disorder potential. For
noninteracting particles the real part of the dc o, is
given by

Ux.\=-fg§al(E), (1a)
where f is the Fermi-Dirac (or Bose-Einstein) distribu-
tion function, and

c(E)=L"Y 8(E—E,)6(E —E,)|n|J.|m)|?,

n.m

(1b)

where A is the total area, |n) and |m) are single-particle
eigenstates, and J is the current operator. For fermions
at zero temperature, —9f/9E =8(E —Er), and hence
ow =o0(Er). Disorder causes [7] all single-particle
eigenstates to be localized except those at a discrete set of
critical energies E. (which in the limit of weak disorder
lie near the middle of each Landau band). Thus,
o1(E)=0 for E#E. and o,(E.)=0c{. The zero-tem-
perature transition between two integer quantum Hall
liquids, or from an integer quantum Hall liquid to an in-
sulator, occurs when one of the E. passes through the
Fermi energy. At the critical point, Er=FE., and o,
=0t =of. Therefore of is the critical conductance at
the zero-temperature transition between QHL’s or be-
tween a QHL and an insulator. Let us now consider an
integer QHL (i.e., the Fermi energy lies in a region of lo-
calized states) at finite temperature. At very low temper-
atures variable-range hopping will dominate the conduc-
tion, but at intermediate temperatures activated conduc-
tion sets in, where, in addition to thermal activation, tem-
perature introduces an effective system size Leyoc T /2,
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According to the scaling picture [7], the energy band of
delocalized states for a system of size L.y has an energy
width T’ where e Loy 7% (the current best estimate for
ve is ve=1). Therefore 6,(E) =0{S(E —E./T), where
Si(x) is a scaling function satisfying S,;(0)=1 and
S1(x)— 0 as |x|— oo. The activated conductivity is
given by

kgT

a. —(E_ —Ep)k —(Ep—E 4+ ) kgT
Gxx=of[€ (E_, l-p)/l\,,T+e (Ep—E 4+ )kg ]Sz =

[}

(2a)

where E + . are the energies of the delocalized states in
the filled and empty Landau bands. S,(y)=fZwdx

e 'S (xy) is also a scaling function as long as y is
small enough so that the integral converges. At a magic
filling, Er is halfway between Landau bands, and parti-
cles and holes are created in pairs; therefore E —.

—Er=Er—E 4+.=A, and Eq. (2a) reduces to
—AJk kgT
0w =20fe YTy, —?— (2b)

Hence for the temperature range in which kg7 <A, but
kgT is still large enough so that the variablc -range hop-
ping can be ignored, o¥, is given by &% =26{S5,(0)
=25,(0)c¢,. If we suppose that o%, is universal, then so
is 6%.. We shall return to this question at the end of this
paper. Inverting the logic, therefore, the universal o2,
=¢2/h observed by Clark et al. [10] in the integer quan-
tum Hall effect is experimental evidence that o, is
indeed universal.

In the rest of this paper, we shall derive a law of corre-
sponding states which, among other things, allows us to
generalize the above results to include the fractional
quantum Hall effect.

The law of corresponding states.— Consider a 2D elec-
tron gas at a magic filling factor (it may or may not be in
the QHL phase). Let the dimensionless Hall conduc-
tance, charge, and statistical parameter of the quasiholes
in the QHL phase be S,,, e* =ne, and 0, respectively [9].
We define a new parameter o, which will generally de-
pend on temperature and the microscopic details. As
shown below, we find that the physical conductivity ten-
sor can be parametrized in terms of o} as

o =(n€)2 Op
h 146,002
, 3)
e? Oh
oo =S, — O ——mMm—
TR YT T4 (000

If we allow the o in Eq. (3) to vary between zero and
infinity, we obtain a conductivity tensor which interpo-
lates between that of a QHL and its parent state.

Let us first apply Eq. (3) to the T=0 transitions be-
tween the Sy, =n integer QHL (where o, =0) and its

parent Sy, =n—1 QHL (where o, =). According to
the scaling theory [7], at the transition the Hall conduc-
tivity is o$, =(n— ¥ )e?/h. Set 6=n=1 (for the IQHE,
the quasihole carries charge +e and has the statistics of a
fermion) and S, =n and invert Eq. (3) with o,
=(n— 1 )e?/h; the result is o =1. This in turn leads to
the predlctlon that <, = Y e?/h. If we now assume that
o, =1 is universal we obtain

2
ot = (ne) 1 ,
¥ h  1+6°
4)
2
s =€_ —_ 2
Oy h S.r_r on 1+ 02

for all transitions between QHL’s and between a QHL
and an insulator.

A correspondence also exists at finite temperatures and
away from the critical point. As examples, we consider
the filling factors at which Clark measured the activated
conductivity: v=7%,%,%,3.3,%. At these filling fac-
tors the theoretically expected values of the quSIholc
charge and statistics parameters are n=—1,+,— 1,
L=t bande=—1+ 3 -1 3 — 31 7, respectively.
Substituting these values of n and 8 into Eq. (3) and in-
verting the conductivity tensor we obtain

—h % P =h 9
P 44 P e agi 49
(5)
=L_ﬂ_
P T 96216
for v=%,%, v=4%,3, and v=7%,3, respectively.

Therefore, pairs of filling factors have the same py, so
long as they have the same numerator and the same oy.
In general o, depends on sample-specific details such as
the strength of the disorder potential, the temperature,
the value of magnetic field, etc. However, we shall later
show that for finite but low temperatures op=5,(0)
xe ke T, independent of microscopic details. As a re-
sult, among pairs of filling factors which have the same
numerator in Eq. (5), pY is the same. Moreover, o2,
the prefactor of the activated conductivity, is given by

*)2
oy =(ih’—sz(e) . ©)

Indeed, as Clark proposed, ol is proportional to the
square of the quasiparticle charge. This result combined
with Eq. (4) yields 6%, =(1+62)S,(0)o,.

Derivation of the Iaw of corresponding states.— To un-
derstand the origin of Eq. (3) and the meaning of o, let
us consider the following long-wavelength and low-
frequency effective action for a 2D electron gas at a mag-
ic filling fraction (we have represented the quasiparticles
as bosons coupled to a statistical gauge field, and chosen
the units so that e/c =h =1):
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—gna, 0 —ila,—nA,)J,+S, |. (7a)

]
S =fd2r dr [" —‘;Sﬂ‘gﬂ")‘Al‘ GVAA 4 0

Here S,,, 6, and ne are the dimensionless Hall conductance, statistics parameter, and effective charge of quasiholes in
the QHL phase, respectively. Jo=2X,q;6*(r—r;) and J=X,¢;(dr;/dt)5*(r —1;) are the charge density and current of
bosons with charge g;, situated at position r;(7), a, is the statistical gauge field, and A, is the physical gauge field. The
partition function is given by

-5
z= Z Z N+'N .I:'f(t=ﬂ)=l’p(i)(r=0)D[ri(t)]D[al‘]e . (7b)
The last term S, in Eq. (7a) is given by

Su=NiA++N_A_ +fd2rdr T2 JoVJo—nu(t)Jo+ind- Acx (7¢)

where Ay (A_) is the quasihole (quasielectron) creation energy, N4+ (N_) is the total number of quasiholes
(quasielectrons) (at a magic filling fraction N+ =N _), 8% A =H (H is the applied magnetic field), and u(r) is the
disorder potential. Equations (7) define a problem of massive bosons in a magnetic field nH, moving according to
guiding-center dynamics in a spatially random potential nu(r), and interacting via n2¥(r) with each other. To calcu-
late the total conductivities one has to integrate out J,, [i.e., perform the sum over N + and the path integral over {r;(z)}
and a,]. The end result is an effective action which depends on A, alone.

To quadratic order, the effect of integrating out J, is to produce the following effective action:

| |
n—fd rdt—— Snb‘mA vt T eundu Ot foimifoit —famfia, (®)

47r0

where f,,=9,(a,— r;AV) —98,(a,—nA,), and r|, 7, are nonlocal space-time functions which contain all the information
about the boson J,-J, correlation functions. The o, in Eq. (3) is the boson conductivity which is given by

o= lim + [ d%rdre " (r,7)0,(0,0)) = lim wm (q=0,0) . 9)
w 0w w0

We can now integrate out a, to obtain the final effective action for A,,

Scn=fd2rdr -L {S_\-y - %+ﬂ3

| |
ar SuvAAuavAﬁ':;FOfmFor‘*';FlzﬂzFlz, (10a)

where F,,=0d,4,— 0,A4,, and I1, ;3 are related to m, , via |

2 2 2 +A+), and the boson conductivity o, =0 at zero temper-
n| m n| m n 1 SR

= ran: = EJ D ;= [; oD’ ature. The transition is approached when W-— W,
=(0(A) and at the transition o, > 0. For W > W,, the
(10b) Bose particle and antiparticle condense into a supercon-
ducting glass state; hence o, — 0. At the critical point,
where requiring Eq. (3) to reproduce the prediction of the scal-
D(q.0)=0r(q,0) 2 +q 1 (q,0)1(q,0)+0 ing theory [7] that o{, =(n— %+ )e?/h, we obtain of =1,
which in turn implies 6§, = ¥ ez/h. This result, combined

From Eq. (8) the total conductivities can be deduced via with Eqgs. (1a) and (1b), yields of = + ¢ */h.
e? .. We next verlf); Clark’s conjecture by showing that
0'.\'.\‘=_h_“!lmown|(q=0vw) » op,=5,(0)e for kgT <A. For this discussion let
an us consider a weak random potential (i.e., W <A), and
el .. n? low temperature (i.e., kg7 <<A). Under these conditions,
Oy =T“!lf]10 Sxy—‘?)—'*'ns(q =0,0) |, the density of thermally excited boson particle/antipar-
ticle pairs is extremely low. Therefore to a good approxi-
and the result is Eq. (3). mation we can ignore the interaction between the bosons
We first comment on the zero-temperature transitions [this is especially true if the interaction V(r) is short
between QHL'’s or between a QHL and an insulator. In rangel. In that case, it is meaningful to talk about the
our theory, the transition is triggered by the condensation single-particle eigenstates of the model defined by (7¢),
of the boson particles and antiparticles in Eq. (7¢). To be and use Egs. (1a) and (1b) to compute the low-tem-
more specific, on the QHL side of the transition the perature conductivity. Since aside from the boundary
strength of the disorder W =(u(r)>'"?<«A=5%(A_ condition on the path integral, the action in Eq. (7c)
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coincides with the action of the electron guiding centers
in the lowest Landau level, we can identify the single-
particle eigenstates and the matrix elements of current
operator in these two problems, so long as H and u(r) are
the same. Therefore we can identify their o1(E). In gen-
eral o,(E) depends on the microscopic details; however,
we shall present arguments below that of =1e¢2/h in-
dependent of microscopic details. Now let us assume for
the moment that oy(E.) is indeed universal and see what
the consequences are.

Under the free particle approximation, we use Egs.
(1a) and (1b) to compute the boson conductivity op.
Similar calculations as in the earlier part of the paper
give

kgT

= e ~alksT (12)

op=3S>

for the temperature range where both I' and A>kgT,
where A= (A4 +A_) is the average creation energy of
quasielectron and quasihole.

We now address the question of the universality of
o1(E.). According to our theory, transitions between
QHL’s (or between a QHL and an insulator) occur when
the bosons in Eq. (7¢) condense. In general, to obtain the
behavior of an observable at a critical point, a full
renormalization-group calculation is necessary. For-
tunately, due to current conservation, the boson current
operator does not acquire an anomalous dimension upon
renormalization [11-13]; therefore the boson conductivity
op remains dimensionless at the critical point. Assuming
there are no degenerate irrelevant operators, standard
renormalization-group arguments require that the critical
boson conductivity of be universal [12]. This fact, com-
bined with Eq. (3) and the fact that o5, =(n— ¥ )e%/h
for the transition between the integer quantum Hall pla-
teaus, implies of=1. This in turn implies that of
=Y e?/h. Experimentally, the absolute value of oy is
very hard to determine. There is an ongoing theoretical
effort to compute o, at the transition in a variety of ran-
dom potentials [14].

Our results rest on the assumptions (which we have ar-
gued are likely to be valid) that (1) at the Chern-Simons
boson insulator to superfluid transition, there are no de-
generate irrelevant operators, and hence the critical con-
ductance is universal, and (2) at sufficiently low tempera-
ture the thermally excited Chern-Simons bosons are ap-
proximately independent of each other.

It is important to note that even given the validity of
these assumptions, the prefactor conductivity cannot in
principle be used to determine the quasiparticle charge
with unlimited accuracy since at any finite temperature,
S2(kgT/T) differs somewhat from S,(0), while at

asymptotically low temperatures there will be a crossover
from activated conduction to variable-range hopping.
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