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Quasiparticle Charge and the Activated Conductance of a Quantum Hall Liquid
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We provide a theoretical basis for Clark's proposal that for quantum Hall liquids at magic filling fac-
—a/I. I T

tors, +here the longitudinal conductivity is exponentially activated, a,-, =a„e,the prefactor o,-, is

proportional to the square of the quasiparticle charge. We also propose that the same experiments un-

cover a remarkable law of corresponding states.

PACS numbers: 73.50.3t, 05.30.—d, 74.20.—z

When a 2D electron gas is placed in a strong perpen-
dicular magnetic field incompressible quantum Hall
liquids (QHL) are formed at a series of rational filling
factors [1]. The signatures of these QHL states are (i)
p„„Oas the temperature T 0 and (ii) p„,, is quan-
tized with value p», =S,~, 'h/e, where S„,, is one of a
hierarchy of possible rational numbers. If one fixes the
magnetic field so that the filling factor is equal to one of
the magic fractions S,~„and studies p, as a function of
temperature, one finds experimentally that within a well-

defined temperature range p „=p e ' . Surprising-
ly, on careful analysis of the experiments [2], Clark et al.
demonstrated the amazing fact that p„, is the same
among pairs of QHL states whose filling fractions have

the same numerator. Extending this analysis, Clark
defined the conductivity prefactor, a„„using the formula

o,„=p„,/[(p, „) +(S,~, 'h/e ) ] and found that cr„„
=e / hq, where p/q is the irreducible fraction corre-
sponding to S„,. In an interesting remark, Clark suggest-
ed that these experiments effectively measure the quasi-
particle charge [3] e* =e/q.

In this Letter, we provide a theoretical basis for Clark's
interpretation of the experimental results. In addition,
we propose that Clark's experiments are a manifestation
of a remarkable "law of corresponding states [4]," which

states that regardless of the electronic state, the conduc
ti vity tensor of a 2D electron gas at a magic ftlling factor
can be parametrized by a single conductivity crt, If we.
represent the quasiparticles as bosons coupled to a statist-
ical gauge field [5], we shall see below that ob is the di-

mensionless conductivity of these bosons.
The QHL's form a hierarchy of states in which a con-

tinuous zero-temperature transition can occur between a
parent and daughter state [6,7] as a function of the mag-
netic field strength or as a function of disorder. For ex-
ample, the S„=O (insulating) state is the parent [8] of
the S„,, =1 QHL, and the S„,, =1 state is the parent of
the S„,, = =, state. At the transition, the critical conduc-

tance, cr'„„ is observed to be finite. We will show that if
certain assumptions are satisfted, cr„, is related to o",,
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via the relation cr„„=(l+8 )S2(0)o'„',-, where Sq(0) is a
universal constant, and 0 is the statistical parameter [9]
of the quasiholes in the QHL state.

Before we embark on the general analysis, it is instruc-
tive to begin by considering a limit of the problem ~here
the relation between the activated conductance and a
critical conductance can be simply established. Consider
a system of noninteracting electrons in a transverse mag-
netic field in the presence of a disorder potential. For
noninteracting particles the real part of the dc o,„ is

given by

ddf
ai(E),E (1a)

where f is the Fermi-Dirac (or Bose-Einstein) distribu-
tion function, and

a~(E) =—g $(E —E.)b(E —E»l&nlJ. Im)l',
n, nl

(lb)

where A is the total area, ln) and lm) are single-particle
eigenstates, and J is the current operator. For fermions
at zero temperature, —Bf/BE=b(E —EF), and hence
o „, =o

~ (EF-). Disorder causes [7] all single-particle
eigenstates to be localized except those at a discrete set of
critical energies E, (which in the l. imit of weak disorder
lie near the middle of each Landau band). Thus,
a~(E) =0 for E&E, and a~(E& )=a~'. . The zero-tem. -

perature transition between two integer quantum Hall
liquids, or from an integer quantum Hall liquid to an in-
sulator, occurs when one of the E,. passes through the
Fermi energy. At the critical point, EF =E, , and o,-,-

=a',-, =a['. Therefore col is the critical conductance at
the zero-temperature transition between QHL's or be-
tween a QHL and an insulator. Let us now consider an
integer QHL (i.e., the Fermi energy lies in a region of lo-

calized states) at finite temperature. At very low temper-
atures variable-range hopping will dominate the conduc-
tion, but at intermediate temperatures activated conduc-
tion sets in, where, in addition to thermal activation, tem-
perature introduces an effective system size L„[T~ T
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According to the scaling picture [7], the energy band of
delocalized states for a system of size L„& has an energy

width I where I a:L„(r t (the current best estimate for

v~ is v&= —', ). Therefore a((E) =rr(S)(E —E,./I ), where

S)(x) is a scaling function satisfying S((0)= I and

S((x) 0 as )x~ ~. The activated conductivity is

given by

—(t' „—t r )// q T —(Er —E ~„)//;q T Bk T
&I e e 2

(2a)

where E~,. are the energies of the delocalized states in

the filled and empty Landau bands. Sp(y)=—f— dx
&e "S((xy) is also a scaling function as long as y is

small enough so that the integral converges. At a magic
filling, EF is halfway between Landau bands, and parti-
cles and holes are created in pairs; therefore E —,.
—Er =EF —E+, =6, and. Eq. (2a) reduces to

c /tt, /I(, BT kg T
o„„=2crt'e ' S2 (2b)

If we allow the rJ/, in Eq. (3) to vary between zero and
infinity, we obtain a conductivity tensor which interpo-
lates between that of a QHL and its parent state.

Let us first apply Eq. (3) to the T=O transitions be-
tween the S„,=n integer QHL (where o), =0) and its

Hence for the temperature range in which kqT &&5, but

kgT is still large enough so that the variable-range hop-

ping can be ignored, (s„„ is given by (r„„=2(r[Sq(0)
=2S2(0)cr'„'„. If we suppose that (r'„„ is universal, then so
is o„„. We shall return to this question at the end of this

paper. Inverting the logic, therefore, the universal o„„
=e /h observed by Clark et al. [IO] in the integer quan-
turn Hall effect is experimental evidence that o„, is

indeed universal.
In the rest of this paper, we shall derive a law of corre-

sponding states which, among other things, allows us to
generalize the above results to include the fractional
quantum Hall effect.

The law of corresponding states Conside. r—a 2D elec-
tron gas at a magic filling factor (it may or may not be in

the QHL phase). Let the dimensionless Hall conduc-
tance, charge, and statistical parameter of the quasiholes
in the QHL phase be S„,, e* = rte, and 8, respectively [9].
We define a new parameter oq which will generally de-
pend on temperature and the microscopic details. As
shown below, we find that the physical conductivity ten-
sor can be parametrized in terms of cry as

(rte) '
I+(~,e)' '

parent S,-,. =n —
I QHL (where o() =~). According to

the scaling theory [7], at the transition the Hall conduc-

tivity is cr', , =(n ——,
' )e-/h. Set e=rt = I (for the IQHE,

the quasihole carries charge +e and has the statistics of a
fermion) and S„.=n and invert Eq. (3) with o„,
=(n ——' )e /h; the result is crt', = I. This in turn leads to
the prediction that o",,- = —, e /h. If we now assume that

cd', =1 is universal we obtain

(rte) '
I

1+g2
(4)

e 1

I+e'
for a/I transitions between QHL's and between a QHL
and an insulator.

A correspondence also exists at finite temperatures and

away from the critical point. As examples, we consider
the filling factors at which Clark measured the activated
conductivity: v= -', , -,', —,—,-', , —', . At these filling fac-
tors the theoretically expected values of the quasihole
charge and statistics parameters are g= —&, &, —&,

and 8= ——', , &, ——,', &, ——', , —„', respectively.
Substituting these values of rt and 8 into Eq. (3) and in-

verting the conductivity tensor we obtain

h h
PAL 2 2+ 4

PA'x 2 4

h

29 2+16 ~

for v= &, &, v= &, 7, and v= 7, —„', respectively.
Therefore, pairs of filling factors have the same p„„so
long as they have the same numerator and the same a&.
In general cry depends on sample-specific details such as
the strength of the disorder potential, the temperature,
the value of magnetic field, etc. However, we shall later
show that for finite but low temperatures cr/, =S2(0)—/I /I. q Txe ', independent of microscopic details As a re-.

sult, among pairs of filling factors which have the same
numerator in Eq. (5), p, „ is the same. Moreover, o„,,
the prefactor of the activated conductivity, is given by

(e*)'s,(e) .

Indeed, as Clark proposed, cr„ is proportional to the
square of the quasiparticle charge. This result combined
with Eq. (4) yields a„„=(l +8)Sq(0)(T'„„

Derivation of the law of corresponding states To un-. —
derstand the origin of Eq. (3) and the meaning of ob, let
us consider the following long-wavelength and low-

frequency effective action for a 2D electron gas at a mag-
ic filling fraction (we have represented the quasiparticles
as bosons coupled to a statistical gauge field, and chosen
the units so that e/c =h = I ):
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I IS = d r dr — S„,e„,qA„ t),Aq+ e„„ia„B~i—i (a„—tlat„)J„+S„, (7a)

Here S„,, , 0, and ge are the dimensionless Hall conductance, statistics parameter, and eAective charge of quasiholes in
the QHL phase, respectively. Jo =P; q;6 (r —r;) and J =P; q; (dr;/dr )6 (r —r;) are the charge density and current of
bosons with charge q;, situated at position r;(r ), a„ is the statistical gauge field, and A„ is the physical gauge field. The
partition function is given by

(7b)
+

The last term S„, in Eq. (7a) is given by

S„,=N+h++N-6 + d rdr —,
'

rt JOVJO —t)p(r)JO+irtJ A„~, (7c)

where 5+ (6- ) is the quasihole (quasielectron) creation energy, N+ (N - ) is the total number of quasiholes
(quasielectrons) (at a magic filling fraction N+ =N ), 8XA„„,=H (H is the applied magnetic field), and p(r) is the
disorder potential. Equations (7) define a problem of massive bosons in a magnetic field rtH, moving according to
guiding-center dynamics in a spatially random potential rtp(r), and interacting via rt V(r) with each other. To calcu-
late the total conductivities one has to integrate out J„[i.e., perform the sum over JV ~ and the path integral over [r;(r )]
and a„]. The end result is an effective action which depends on A„alone.

To quadratic order, the eA'ect of integrating out J„ is to produce the following eff'ective action:

S„'a.= d r dr — S„,e„„iA„, t)„Ai, + &„,za„ tiw~+ fo; trifo; + fi2trzf iz ~

2

4x 4zO 4z 4x

where f„„:8„(a, rtA„—) —t),(a—„—tIA„), and tr~, tr2 are nonlocal space-time functions which contain all the information
about the boson J„-J„correlation functions. The ot, in Eq. (3) is the boson conductivity which is given by

ot, —= lim — d r d r e '"'(Jt, (r, r )Jt (0,0)) = lim totr ~ (q =0, to) .
1

c~ -~0 M (u--. 0

We can now integrate out a„ to obtain the final eff'ective action for A„,

S„a= d rdr — S„,, — +f13 e„,gh„t)„A„+ F 11OFo;+ F, fI F„,
oJ

(IOa)

where F„,:8„A„—tI„A„—, and II/ z 3 are related to tr~ 2 via
I~ » 7 r

Hl= — ', H2= — ", H3=—
0 D 0 D 0 OD

(I ob)

where

D(q, or) = ro tr)(q, to) +q tr)(—q, to)try(q, to)+0

From Eq. (8) the total conductivities can be deduced via

eo„-= lim toI1~(q =O, ro),
N ~0

rJ», = Ilnl S»i +fig(q =O, to)
9'

h~-0
and the result is Eq. (3).

We first comment on the zero-temperature transitions
between QHL's or between a QHL and an insulator. In

our theory, the transition is triggered by the condensation
of the boson particles and antiparticles in Eq. (7c). To be
more specific, on the QHL side of the transition the
strength of the disorder W =(p (r) ) 't « 5—= —' (&—

+5+), and the boson conductivity rrb =0 at zero temper-
ature. The transition is approached when
=O(h) and at the transition ot, &0. For W& W, , the
Bose particle and antiparticle condense into a supercon-
ducting glass state; hence og ~. At the critical point,
requiring Eq. (3) to reproduce the prediction of the scal-
ing theory [7] that rr'„, =(n ——)e /h, we obtain at', =I,
which in turn implies a'„'„= —,

' e /h. This result, combined
with Eqs. (I a) and (I b), yields crf = —,

' e /h.
We next verify Clark's conjecture by showing that

ot, =S2(0)e I'or kttT«h. For this discussion let
—

/tt, /I. q

us consider a weak random potential (i.e., W«h), and
low temperature (i.e., kttT«A). Under these conditions,
the density of thermally excited boson particle/antipar-
ticle pairs is extremely low. Therefore to a good approxi-
mation we can ignore the interaction between the bosons
[this is especially true if the interaction V(r) is short
range]. In that case, it is meaningful to talk about the
single-particle eigenstates of the model defined by (7c),
and use Eqs. (Ia) and (Ib) to compute the low-tem-

perature conductivity. Since aside from the boundary
condition on the path integral, the action in Eq. (7c)
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coincides with the action of the electron guiding centers
in the lowest Landau level, we can identify the single-
particle eigenstates and the matrix elements of current
operator in these two problems, so long as H and p(r) are
the same. Therefore we can identify their oi(E). In gen-
eral oi(E) depends on the microscopic details; however,
we shall present arguments below that oi = —,

' e /h in-

dependent of microscopic details. Now let us assume for
the moment that o'i(E„) is indeed universal and see what
the consequences are.

Under the free particle approximation, we use Eqs.
(la) and (lb) to compute the boson conductivity rrs

Similar calculations as in the earlier part of the paper
give

(12)

for the temperature range where both I and h, &&kqT,
where 6= 2 (5++6-) is the average creation energy of
quasielectron and quasihole.

We now address the question of the universality of
oi(E„). According to our theory, transitions between
QHL's (or between a QHL and an insulator) occur when
the bosons in Eq. (7c) condense. In general, to obtain the
behavior of an observable at a critical point, a fu11

renormalization-group calculation is necessary. For-
tunately, due to current conservation, the boson current
operator does not acquire an anomalous dimension upon
renormalization [11—13]; therefore the boson conductivity
ob remains dimensionless at the critical point. Assuming
there are no degenerate irrelevant operators, standard
renormalization-group arguments require that the critical
boson conductivity crf be universal [12]. This fact, com-
bined with Eq. (3) and the fact that cr,',, =(n —

—,
' )e /h

for the transition between the integer quantum Hall pla-
teaus, implies rrI; =1. This in turn implies that rri"

=
2 e /h. Experimentally, the absolute value of rr„„ is

very hard to determine. There is an ongoing theoretical
eA'ort to compute a,„at the transition in a variety of ran-
dom potentials [14].

Our results rest on the assumptions (which we have ar-
gued are likely to be valid) that (I) at the Chem-Simons
boson insulator to superfluid transition, there are no de-
generate irrelevant operators, and hence the critical con-
ductance is universal, and (2) at sufficiently low tempera-
ture the thermally excited Chem-Simons bosons are ap-
proximately independent of each other.

It is important to note that even given the validity of
these assumptions, the prefactor conductivity cannot in

principle be used to determine the quasiparticle charge
with unlimited accuracy since at any finite temperature,
S2(ka T/I ) differs somewhat from Sq(0), while at

asymptotically low temperatures there will be a crossover

from activated conduction to variable-range hopping.
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