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Polaron Formation in One-Dimensional Quasiperiodic Systems
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%'e have studied through real-time numerical simulations the question of polaron formation by a sin-

gle electron injected in a band consisting of Auctuating amplitude or mobility edge eigenstates. We
found that polaron formation depends strongly on how close to a mobility edge the initial state is, on its
average energy, and, to a much lesser degree, on its shape. In some instances novel highly excited long-
lived localized polarons appear. In general, the time evolution exhibits an unexpected behavior; even for
very long times, the electron does not seem to transfer much of its energy to the lattice.

PACS numbers: 7l.38.+i

The question of polaron formation has been studied ex-
tensively as a ground-state problem in periodic (or uni-
form) systems [I]. However, there are two questions
which have not yet received satisfactory answers: How
polaron formation occurs near a mobility edge [2]?
What is happening in the case where an electron is inject-
ed (or is photoexcited) well within an empty band in the
presence of electron-phonon (el-ph) interaction? The
usual answer to the second question is based on the as-
sumption that the electron gradually transfers its energy
to the lattice, reaches the bottom of the empty band, and
then the question of polaron formation is again treated as
a ground-state problem. In this Letter, we report results
(some of them quite unexpected) based on a novel ap-
proach employing techniques borrowed from nonlinear
physics, i.e., numerical simulations of the time evolution
of an initial electronic state as it interacts with the lattice.
Our approach can be easily generalized to treat the prob-
lem of two electrons interacting with each other and with
the lattice. Thus, it off'ers itself for the study of bipolaron
formation [3] especially in the difficult case where the
electron and ion masses are of similar magnitude; this
case may be relevant to narrow-band high-T, . supercon-
ductors [4] or the newly discovered fullerides [5].

The Hamiltonian describing our system is H =H,
+HI+H, I. The electronic part, H„is given by

H =g& In)(ni —Vg in&(mi,
n nnr

e„=icos(2tro'n), V )0,
where the local orbital in) is centered around site n

([nj = I, . . . , N form a ID lattice with lattice constant a
and periodic boundary conditions: iN+ I) =

i I));o is an
irrational number taken as the "golden mean" (v 5
+ I )/2; the prime in the summation denotes nearest-
neighbor pairs only. The Hamiltonian (I) was chosen be-
cause it possesses Bloch eigenstates (for ap=0), mobility
edge eigenstates (when ep/V=2), and all intermediate
fluctuating extended eigenstates (when 0 & ep/V & 2),
giving thus the opportunity to study in a simple 1D mod-
el, the first of our questions. The disadvantage of Hamil-
tonian (I) is its ID character [for D ( 2, as opposed to
D=3, a localized (in the framework of the static Emin-
Holstein [6] approximation) polaron is always the ground

state no matter how weak the el-ph coupling is] and the
fact that its spectrum is very anomalous [7].

The lattice part, HI, is given by

H, = —,
' mgu„'+!~g(u„+i—u„)', (2)

n n

where m is the ionic mass, u„is the displacement, u„is

the velocity of ion n, and K is the "spring constant. " The
lattice vibration part is treated classically [8]. The max-
imum eigenfrequency is 2coo, and the sound velocity is

c =tupa, where top =etc/m = tt '. T—he electron-lattice in-

teraction is taken as a symmetrized deformation poten-
tial, i.e.,

H,, (=@gin &(ni(u„+i—u„ i), (3)
n

where g is the strength of the coupling (2' is the defor-
mation potential). The strength of the coupling can also
be characterized by the dimensionless quantity

X=@ /tcV (4)
which is similar to the X which appears in the theory of
superconductivity. Typical values for A, in metals are in

the range 0. 1 to 1.5.
Initially, the lattice is at rest and undeformed and the

electron is placed in one of the following states: (a) in an

eigenstate (corresponding to an eigenenergy near the bot-
tom of the band or near its center or in between); (b) in a
uniform state [iy(0)) =(I/JN )g„in)];(c) in a Gauss-
ian wave packet with a standard deviation o. =3 and ini-
tial energy —1.949V; (d) in the state intr(0)) =(n) with n

close to [N/2] and energy close to zero; and (e) in the

state i Itt(0)) =pc„in) with c„=I/v 5, —I/J5, I/v 5,
—I/J5, I/J5, for five consecutive sites around the mid-

dle of the specimen, and energy close to zero. In our nu-

merical work, we have taken V as our unit of energy and

tt/t, .=81.8, where t,, = rt/V is the characteristic electronic
time. We have chosen tp= tt(tt/t„) as our unit of t—ime.

The time integration is based on the fourth-order Runge-
Kutta method with a step equal to 2x10 to. The size
of the step was such that, during the numerical simula-

tion, energy is conserved to an accuracy of 10 ' or
better.

We classify our findings for the behavior of the pola-
rons in three categories: (a) localized polarons, (b) large
polarons, and (c) intermediate polarons. The third
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category, which spans a rather wide range of parameter
space, may or may not disappear for an infinite system
and very long time lapse, t » r, where r is the relaxation
time. An approximate estimation for r can be obtained
using perturbation theory from the formula r '=(2tr/
h)A. ht, where ht is the time average lattice energy per
site, which is easily obtained from our calculations. If the
electronic and lattice degrees of freedom were quasi-
independent, one expects that equilibration of their re-
spective temperatures would be established for t = (10-
100)r. In all cases of highly excited electrons, we found
that such equilibration was not even approached; instead,
the lattice temperature either reached or approached a
steady value orders of magnitude lower than the electron-
ic temperature during a time lapse which in some in-

stances exceeded 5000m. This behavior strongly suggests
that even in cases of weak electron-lattice interaction the
electronic and lattice degrees of freedom cannot be con-
sidered as quasi-independent. Rather, as the polaron
(even the large polaron) is formed (usually in steps), the
polaron-lattice coupling is renormalized to smaller and
smaller values, until, eventually, at least in some cases, it
reaches a vanishingly small value.

To study the question of polaron behavior, we have ex-
amined the time development of (a) the electronic wave
function, (b) the participation number P=g~c„~ )
where c„=(n~ter(t)), (c) the electronic energy E„,(d) the
lattice energy Et= H(both the—kinetic and the potential
part), (e) the interaction energy E, t =(H, t&, and (f) the
mean square displacement of the wave function x (t)
=g(c„(t)[(n no)—, where n =op)c„( )0( n

In Fig. I, we show results for so=0.5 (weak departure
from periodicity), A. =0.095 (weak coupling), and a uni-
form initial state. The number of sites was chosen as
N =377 [which, being a Fibonacci number, makes the
difference s~+~ —

s~ small ( =0.0035)). The average en-

ergy of the initial state is —2.001, which almost coincides
with the bottom of the unperturbed band. Figure I shows
clearly that a localized polaron is formed after about two
units of time. [To exclude the possibility that this locali-
zation may be a finite-size effect, we have repeated the
calculation for N=611 (the next Fibonacci number).

O ~
ot

FIG. 1. Localized polaron formation from a uniform initial
state for W =377, sa=0.SV, and A, =0.095. P(n) = ~c„(t)

~
.

The unit of time is to=81.8tl.

We found essentially the same results as in the %=377
case. ] Even after a polaron is formed, there are varia-
tions in its size with time, the most characteristic of
which is the almost periodic pronounced contractions at
t =2.5, 7.5, 12, 16.5, etc., appearing as sharp peaks in the
lattice energy and the electronic energy and sharp valleys
in the interaction energy and the participation number.
This breathing character of the localized polaron seems
to be due to a coherent motion of the lattice where the
peaks of the lattice potential energy coincide with the val-
leys in the lattice kinetic energy (the latter is on the aver-
age about 20% of the former). Polaron formation is asso-
ciated with a decrease in P from the initial value P =377
(or P =611) to a quasiequilibrium value of P = 50 with
values as low as 30 during the contraction periods. In the
initial phase (t (2) the localized polaron starts forming
in a nonmonotonic way through successive contractions,
each one followed by a short expansion apparently be-
cause of local overshooting. Note also that the electronic
energy increases on the average, while the interaction en-
ergy, being negative, compensates for the variation of
both E, and EI. Similar results were obtained for the
periodic case (so=0) with the same 1t, (=0.095) and a
uniform initial state (which in this case is the ground
state of the unperturbed electronic system). The main
difference is that in the ~=0 case, all quantities have a
much smoother time evolution.

Increasing the initial value of the energy of the electron
requires larger values of either A. or ep to obtain a local-
ized polaron. In the case ~here the initial electronic en-
ergy is near the center of the band, ep must exceed unity
in order to obtain a localized polaron for any reasonable
value of A, . As the mobility edge is approached, localized
polarons appear for quite small values of A, . The center-
of-the-band localized polarons consist usually of more
than one rather sharp peak, each peak sometimes being
independently mobile, thus giving rise to local excitations
of fractional charge. These novel, highly excited, ap-
parently stable (no sign of disintegration was observed
even for very long time lapses of the order of 3 x 10 tt) lo-
calized polarons are reminiscent of solitons in polyace-
tylene, only richer in behavior.

It is worthwhile to point out that, in spite of the ap-
parently chaotic noisy behavior of the various quantities,
long time scales appear either dependent or independent
of N. Furthermore, if ter(0) is an eigenstate the transfer
of energy to the lattice is much larger than in the other
cases in spite of the fact that for t =3tt, ttr(t) looks equal-
ly extended for all initial states of the same energy. This
suggests that the system retains some memory of the ini-
tial state for a very long time (t ~ 3 x 10 tt ).

A case of large polaron was obtained starting from a
single-site, type-(d), initial state with energy near the
center of the band (E,. =0.016), so= I, and )t, =0.86
(rather strong electron-lattice coupling). The initial wave
packet expands at the beginning (t +3tt) ballistically
with a mean square displacement x —t, where a= 2.
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The maximum value of (x ) '~ is about 120; the value of
P remains almost constant at 185~15 (for 0.05 & t
& 380) with no tendency for reduction in spite of the ex-

tremely long running time (about 3X10 tl). The lattice
energy has not saturated, although dEI/dt is decreasing
on the average in a steplike way. The lattice kinetic and
potential energies are equal to each other indicating an
internal lattice thermalization. The electron-lattice in-
teraction energy is very small (about —0.001). In spite of
the very long time run, only a very small fraction of the
electron energy has been transferred to the lattice
(0.095). The "final" electronic energy of —0.08 corre-
sponds to an electronic temperature of the order of 30000
K, while the final lattice energy of 0.095 corresponds to a
lattice temperature of 2.9 K. Extrapolating linearly the
HI vs t curve, we conclude that thermal equilibrium be-
tween lattice and electronic degrees of freedom will re-
quire times of the order of 10 r, if it is going to be
achieved at all. A quite similar behavior was observed
even for a much smaller value of X (A, =0.024) and
larger values of so (op=1.5) and for the Gaussian wave

packet. As in the previous case, there is no sign of forma-
tion of a localized polaron. In this case, in spite of the
fact that r =63, it seems that a steady state has been
reached for I = 140 with P = 125, E„=—1.961, HI
=0.012, and H„I = —0.0003. Again the effective elec-
tronic temperature is of the order of 5000 K while the
effective lattice temperature is 0.37 K. Repeating the
calculations for N =611,we found that the steady state is

approached at a slower rate and that the final P increases
proportionally to N. This shows that our large polarons
are either extended or have a localization length much

larger than 611. The above results support the idea that
even large polarons are formed before much of the elec-
tronic energy is transferred to the lattice and that pola-
rons have a very (or vanishingly) small coupling to the
lattice. It is not clear whether or not this important re-
sult (according to which only a small fraction of the ener-

gy even of a highly excited electron is transferred to the
lattice) is valid for 2D or 3D systems. In any case, it can
possibly be checked experimentally by photoexciting elec-
trons to the middle of the conduction band in quantum
wires at very low temperatures.

We observed many cases of intermediate-nature pola-
rons in which a rather mobile and deformable peak in the
wave function coexists with what seems to be a more or
less uniform background. We have termed these cases in-

termediate polarons. In most of these cases, although we

followed the temporal evolution for a long time, it was

not possible to find out whether eventually the polaron
should become localized or large because periods of clear
localized polaron formation are followed by periods of
rather large polarons or vice versa. Increasing the length
from N =377 to N =611 did not change this intermediate
behavior. One such case is shown in Fig. 2, where a tem-

porary localized polaron, associated with a strong valley
in the participation ratio, is dissolved to a resonancelike
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FIG. 2. Time evolution of an intermediate-type polaron from
an initial eigenstate with F, = —1.942, for %=377, ~=1, and
A. =0.38. A temporary localized polaron is formed and then it

dissolves to a resonancelike state.

state. Details of these very interesting intermediate cases
will be presented elsewhere.

At the critical point op=2 the behavior of an initial
single-site, type-(d), state with average energy equal to
0.034 seems to be the following: For no coupling (k =0),
the motion appears to be difl'usive (we find that x'-r"
with a = 0.9+ 0.1). For a very weak coupling (X

=0.024), the motion at the beginning t &4ll is diffusive

with the same a = 1 and then becomes subdiffusive
(a=0.6) with strong fluctuations in x . A steady state
appears to set in for I & 5 with P = 110+ 10, HI
=0.006, E,, =0.028, and 0, I =0.0003. Note that P in

the absence of coupling, saturates at about 80. The ob-
served increase of P for A, =0.024 may be attributed to a
"phonon-assisted" smoothing of the very fragmented mo-

bility edge states. In the present case of very weak k
(=0.024) our data do not allow any conclusion regard-
ing the ultimate localization of the polaron, although it is

conceivable that for long enough specimen and long times
the x vs t will saturate indicating thus that localization
is setting in. As we increase the coupling k to 0,095
(keeping all other relevant quantities the same), again x
vs t starts diff usively and then the motion becomes
subdiffusive with a =0.6; finally x vs t saturates. Fur-
ther increase of A, to k =0.38 confirms the picture that al-

ready emerged. The transition from diffusive (a= 1) to
subdifl'usive (a=0.6) motion occurs at t = 3rl and the
saturation value of both x- (57) and the participation
number (P=25~5) become even smaller, demonstrat-

ing a lattice-induced localization. In conclusion, at the
mobility edge an extremely weak coupling is enough to
create a localized polaron even for the most diScult to lo-

calize, type-(d), state.
In Fig. 3, we summarize our findings by indicating the

regions in the JK vs so plane where the polarons are local-
ized, or intermediate, or large. In Fig. 3(b), we show re-

sults for initial electronic energy near the bottom of the
band (Gaussian wave packet; similar results were ob-

tained for the uniform initial state and for eigenstates of
similar energy). In Fig. 3(a), we show results for initial

energy near the center of the band [single-site, type-(d),
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FIG. 3. Separation of so- JX plane into regions of large, inter-

mediate (I), and localized (LOC) polarons for initial energy (a)
at the center of the band, E, =0, and (b) near the bottom of the
band, E, = —1.949.

conductivity [2] advocated by Mott [9]. Another impor-
tant result of our study is also shown in Fig. 3, where a
much stronger electron-lattice interaction is needed in or-
der to form a localized polaron as we move towards the

center of the band and away from the mobility edge.
In conclusion, we point out that the important findings

of our novel approach are the following: (i) As the mo-

bility edge is approached an extremely weak coupling
su[I]ces to create localized (although not necessarily
atomic size) polarons. This result is likely to be valid in

3D systems as well, in view of the results of Ref. [2]. (ii)
Close to the mobility edge or for very large coupling, lo-

calized, high energy, stable polarons of fractional charge
appear. (iii) As polarons are gradually created in steps,
the effective polaron-lattice coupling is reduced possibly
to vanishingly small value even for large polarons. (iv)
Interesting and unexpected time evolution appears involv-

ing short-scale noisy behavior, long-time scales, and
long-term memory. It is not clear whether the result (iii)
above is a peculiar feature of the present model or is of
more general validity.
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states; similar results were obtained for the type-(e) state
and for eigenstates of similar energy]. It must be stressed
that there is an ambiguity in finding the boundaries be-
tween the localized and the intermediate states and be-
tween the latter and the large states. Furthermore, for an
infinite system and infinite time lapse, it is probable that
part of the intermediate (or even the large) region may
become localized. It must be pointed out that besides the
obvious criteria for deciding whether or not a polaron is
localized (i.e., shape of the eigenfunction, participation
number, independence of N, time evolution of x ), a clear
sign of localization is obtained if F,I—F, ; &0 and

~E, tI~ & Et i, where the subscript i denotes initial and
the subscript f denotes final state. Similarly, if ~IE, t~

&&E(I, this constitutes a strong indication for extended
polarons.

From Fig. 3, we see that near or at the mobility edge a
localized polaron is formed even for extremely weak
electron-lattice interaction for all types of initial electron-
ic states (even for those with average energy near the
center of the band). This feature must be probably attri-
buted to the very fragmented nature of the eigenstate
near a mobility edge rather than to the pointlike nature
of the unperturbed spectrum, since the latter will be
"smoothed out" in the presence of the interaction. Thus,
the present work supports the results of the approximate
approach followed in Ref. [2] and restores, through the
polaron formation, the possibility of a minimum metallic
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