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Generalized Car-Parking Problem as a Model for Particle Deposition with
Entropy-Activated Rate Process
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We study a class of generalized car-parking problems and show analytically that whereas the proper-
ties (structure and density) of the configurations generated by the generalized and the standard parking
processes are diiferent at most times, they are identical at the jamming limit (t- +~). We indicate
how such models can be used to describe more realistic particle deposition processes which combine bulk
diA'usion and irreversible adsorption. This provides a theoretical basis to explain recent simulation re-
sults.

PACS numbers: 68. I O.Jy, 02.50.+s, 82.65.—i

The development of models for the adsorption of large
particles (colloids, proteins, latex spheres, etc. ) on solid
surfaces is an area under active investigation. To de-
scribe the physical situations in which the deposition
occurs irreversibly, that is, with negligible desorption or
surface diffusion, and in monolayers, it has been suggest-
ed to use the random sequential addition (RSA) model
[ll. In this model, hard objects are deposited randomly
and sequentially onto a surface, subject to the condition
that once adsorbed they cannot move [1-6]. However, a
limitation of the RSA description is that it does not take
into account the transport process of the particles from
the bulk to the surface nor the interactions between ad-
sorbed particles and particles in solution. A more realis-
tic model has been recently proposed [7,8], which avoids
some of the shortcomings of the simple RSA: The depo-
sition is described as a process of diffusion and adsorption
of hard spheres; the spheres undergo Brownian dynamics
in solution and become irreversibly bound to the surface
once they contact it. The long-range hydrodynamic
forces are neglected but the short-range interactions be-
tween adsorbed spheres and spheres in solution are ex-
plicitly accounted for. By means of heuristic arguments,
Schaaf, Johner, and Talbot [7] have shown that the
asymptotic approach of the coverage towards its satura-
tion value is characterized in this model by a power law

in time, the exponent of which is diferent from that ob-
tained in the simple RSA. Interestingly, it has been ob-
served in subsequent computer simulations [8] that the
coverage and the structure of the jammed configurations
are indistinguishable from those of the jammed RSA
configurations.

In this Letter, we consider the (I+ I)-dimensional ver-
sion of the preceding model: The deposition of hard disks
that undergo Brownian motion in so1ution and are ir-
reversibly adsorbed onto an infinite line. Note that since
the disks interact with purely repulsive hard-core poten-
tials, multilayer formation is forbidden. A modification

of the present model to allow for multilayered deposits
consists of considering the hard disks as "sticky, " which

would lend to a version of the diffusion-limited aggrega-
tion [9].

We show analytically that a class of generalized one-
dimensional RSA (or "car parking") processes present
the features observed in the above-mentioned studies. At
all finite times (except very short ones), the density and

the structure of the adsorbed configurations are different
from those of the simple parking problem; in particular,
the density evolves asymptotically towards its saturation
value with an algebraic time dependence which differs in

general from the usual t ' behavior. However, the den-

sity and the structure of the jammed configurations
(t +~) are identicql to those of the simple car-
parking process. This class of generalized parking prob-
lems involves a rate of adsorption (per unit length) which,

instead of being constant as in the simple case, is a func-
tion of the length h of the interval which is locally avail-

able for the insertion of a new object. We next show how

the diffusion and adsorption of hard disks, which can be
viewed as an activated rate process in which the activa-
tion free-energy barrier is purely entropic, can be reduced
to a generalized car-parking problem. This provides a

theoretical basis to explain the recent results [7,8].
We introduce first a new class of generalized car-

parking problems. Objects of equal size 0 are randomly
and sequentially deposited onto an infinite line subject to
the constraints that two objects cannot overlap and that
once inserted an object is fixed in p1ace. However, con-

trary to the standard parking problem [l-3], the rate of
deposition per unit length is not a constant: It is a func-
tion of the length of the interval (between preadsorbed
objects) in which one tries to insert a new object. Denot-

ing G(h, t) as the distribution function for intervals of
length h and choosing for convenience tT= l, one derives

the following exact rate equation for the kinetics of the

process:

eG(h, t) ~+ oo

at
= —k(h)(h —I )G(h, t)+2 dhl k(hi)G(hit), ,~ h+]
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with the additional condition that G(h, t =0) =0; k(h) is the rate of adsorption per unit length in an interval of length h

and is equal to zero when h E [0,1]. If k(h) is independent of h, h & I, the standard car-parking problem is recovered.

Note that the preceding model is different from usual cascade processes [10] since it accounts for the exclusion effect

due to already adsorbed objects. We choose k(h) as a (positive) monotonously decreasing function in the interval

]I,+~[, with the following properties: (i) k(h) may diverge when h I+, but if so it diverges like (h —I) ' with

0(a( I; (ii) k(h) tends to a strictly positive value, k &0, when h +~ and we consider both the case in which

k(h) is strictly equal to k for h» h, . and the case in which k(h) approaches k asymptotically like Ah, A &0,
P) l. In the following, the time is expressed in units k ' and we define K(h)) 0 such that k(h) =I+K(h), and

H(h, t), h & I, such that G(h, t) =exp[ —(h —l)t]H(h, t), h & l.
By introducing the preceding definitions in Eq. (I) and by formally integrating over time, Eq. (I), for h & I, can be

transformed into

~ h+I t2e

(2)

Two noticeable features of the above equation are that the arguments of the exponentials present in the right-hand

side are both negative and that the determination of H(h, t) requires only the knowledge of H(h', t) for h'~ h+1. To
take further advantage of this latter property, we rewrite Eq. (2) as

H(g r) 2+, dr e
—K(h)(h —I)((-l, )

4 Q

x „h + idh 2[I +K(h 2)]e
—K(h„ I )(h„ I

—
I )(I„ I

—t„)at„edp
oo

x J„,dh„[I+K(h„)]e " " ' '"H(h„, t„), h & 1. (3)

H(lt, t) can now be obtained by knowing H(h', r) for h') h+n, so that when the procedure is repeated a sufficient num-

ber of times, H(h, r ) can be expressed in terms of the asymptotic solution H(h', t) for very large h'. Similarly, the inter-

val function G(h, t ) for 0 ( h ( I can be written as

n —
l

P ,
~ h+1 it, —I ~ "i+' hp —I 4 "~-i+' " h —IP

+2 dhi dh24 h+[ gi —
1 4 hl+' ,dh„[I+K(h, )l„dt i e (4)

Consider now the case in which K(h) =0 for h ) h, . For all h ) h„, Eq. (2) reduces then to

PI
H(h, t) =Ha(t) =t exp' —2 dry4p , h~h, .

oo

H(h t) 2„dt's& dhle ' 'H(hi ti),
the solution of which is, as in the standard parking problem [3],

1
—e

(5)

By inserting the above solution in Eq. (3) and choosing n such that h+n ) h„we derive that H(h, t), h & I, is always
bounded and, as a consequence, that G(h, t), h & I, vanishes exponentially when t +~: This property is also true for
Go(h, t), the interval distribution in the standard parking process, for h & I [3]. When h C ]0,1], we again choose n in

Eq. (4) such that h+n ~ h„and, using the fact that Go(h, t) is obtained by setting K(h) =0 in Eq. (4), we derive

G(h, t) —GO(h, t) = —g &
dhl „h +,dh„e " [H(h„,t) —Ho(t)]. (7)

H(/g r) =Ho(r) (8)

Since H(h, r) and Ho(r) are bounded, it follows from Eq.
(7) that G(h, t) converges uniformly for h E- ]0, 1] to-
wards Go(h, t) when t +~.

The procedure can be repeated in the more complicat-
ed case for which K(h) —Ah ~, h +~, P) I, A & 0.
We look for an asymptotic solution of Eq. (2) which has
the following form:

where Ho(t) is defined by Eq. (6) and R(h, t =0) =0.
After some manipulations, it can be shown that R(h, r) is
a positive increasing function of time and that the leading
term of R(h, t) for very large h goes as [2A/3(P —I )]ht
when ht 0, P& I, as —(2A/3)ht lnht when ht 0,
P=l, and is bounded for all times [11]. Assuming that,
for h large enough, R(h, t) is always bounded and insert-
ing Eq. (8) in Eq. (3), we derive that H(h, t), h & I, is
bounded for all times. This result and the property that
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fodt l e '[[I +K(h)]H(h, t i) —Ho(t i)} converges
uniformly towards zero when h +~ can be used to ob-
tain that G(h, t) converges uniformly towards Go(h, t)
when t +~: The structure of the jammed conftg
urations (characterized here by the interval distribution
function when t + ~) is thus identical for the general
ized and for the simple car-parking problems Th. e con-
vergence of G(h, t) when t + ~ being uniform, we can
further conclude that the saturation coverage p(~)
=lim, .+ fadhG(h, t) is also identical to that of the
simple parking case [1-3]:

p(~) =pa(~) = dt exp —2 dt,
1
—e

~0 Jo I

=0.747. . .

If the jammed configurations of the generalized and
simple parking processes are identical, it is obvious from
Eqs. (2)-(4) and (8) that this is not true for finite times.
For instance, it can be easily shown that the coverage
p(t) asymptotically approaches its saturation value
p(~) =pa(~) according to

p( ) —p(t) —t '"i ', t--+, 0(a&1,
if k(h) behaves as (h —I) when h I+: The stan-
dard case corresponds only to a =0. The difference can
also be illustrated by considering the short-time behavior.
For simplicity, we choose the case for which K(h) =0 for
h ~ h, and we then obtain

sp(t)=t t-+ ——+ — dh K(h)(h —I) t -'+. . . ,
6 3~]

(I i)
which reduces to the short-time expansion of po(t) only
when h, . =l. Finally, we stress that the configurations
produced by the generalized and simple parking processes
are also different at the same given density [provided
0 & p & po(~)]. Using the one-to-one mapping between
time, t E [0,~[, and density, p 6 [O,po(~)[, one can
study, e.g. , the fraction of the line which is available for
the center of a new object, 4(p) =fl dh(h —1)G(h, p), a

quantity that is indicative of the structure of the
configurations at a given p [5] [note that for a general-
ized process dpldt&@(p(t))]. For the same model as be-

fore, the following low-density expansion can be obtained:

~2 2
'

I bc t max(h„2) 3

4(p) = I —2p+ + —+ dh K(h)(h —
I )(3 —h)+ ' dh K(h)(h —2) +

2 3 3
(i 2)

which, again, corresponds to the expansion of &0(p) only

when h, . =1.
We now indicate under what conditions the (I+ I)-

dimensional deposition process can be reduced to a gen-

eralized car-parking problem. The diff'usion and adsorp-
tion of hard disks represents a particular version of the
well-studied activated-rate processes in the Smoluchowski

(or Brownian) limit. What is specific here is that the "re-
action, " which is the adhesion of the disks on the 1D sub-

strate, is irreversible and that the activation free-energy
barrier is due to the exclusion effect of the preadsorbed
hard disks and is thus purely entropic. If the crossing of
the activation entropy barrier is much slower than the
characteristic time of diffusion in the bulk, it dominates
the kinetics of the whole deposition process. The tran-

sient kinetics related to bulk diff'usion can then be

neglected and the rate of adsorption can be taken as in-

dependent of time.
Consider the region of space which is above an interval

of length h between two preadsorbed disks [cf. Fig. I (a)].
If one assumes for simplicity that each time a disk leaves

the region another comes to replace it from a neighboring

region, the process can be described as the diffusion of
points, i.e., centers of hards disks, in a channel of varying
cross section with an absorbing boundary segment of
length h —1. The rate of adsorption can be related to the

mean first passage time (from the bulk to the absorbing

segment) which in turn can be obtained approximately by

using the Fick-Jacobs description [12]. In the latter, the

2D diffusion is replaced by an effective 1D diffusion equa-
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BP(hz t) 8 8=D x(/l, z) x(h, z) 'P(ll, z, (),
81 Bz 8z

h+ I
—2(l —z -) 't-, 0 ( z & I,

x(/l z)
t h

(i 3)

(i4)

where D is the bulk diffusion constant and x(h, z) is the

width of the channel at height z. The Fick-Jacobs equa-
tion is a Smoluchowski equation in which the potential

energy is replaced by a purely entropic free-energy term

[13], dG(h, z) = —kaTlnx(h, z), which is illustrated in

Fig. 1(b). As recently discussed by Zhou and Zwanzig,
the Fick-Jacobs description has no real justification aside

from its plausibility, but seems to give a good approxima-
tion of the rate constant [13].

The mean first passage time is given by the standard
formula:

r(h) = D„dzx(h, ) g
dzx(h, z)

—]dz'x(h, z') ', dz "x(h,z"),
~0 ~l -'

~here z„, is the maximum height. The rate of adsorption
in the interval of length h can then be written as

k(h)(h —I) ~ ~, dzx(h, z) r(h)

t

tion for P(h, z, t), the probability density of finding the
center of a hard disk at a height z [measured from the

absorbing segment, cf. Fig. 1(a)]:
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where fo™dzx(h,z) is proportional to the relative num-

ber of disks that are in the channel under consideration.
Note that this treatment assumes implicitly that the ad-
sorption is uniform on the available segment of length
h —1, which cannot rigorously be true: There is certainly
a slight propensity of the disks to adsorb close to the
preadsorbed disks rather than in the middle of the seg-
rnent. In the limit where the deposition process is purely
ballistic, this effect has been shown to be non-negligible
[14]; however, in the diffusion limit considered here it is

expected to be small.
From Eqs. (14)-(16), it can be readily derived that

k (h) approaches a strictly positive value, k (~) & 0,
when h + with an asymptotic h ' dependence and
diverges like (h —I) 't when h I+; the full h depen-
dence is illustrated in Fig. 2. We can thus conclude that
the diffusion-adsorption process can be approximated as a
generalized car-parking problem belonging to the above
studied class (with a = —,

' and P = I). All the precedently
derived properties apply then to the (I + I )-dimensional
diffusion-adsorption process. As for the simple RSA,
there is no known procedure to derive an analytical solu-
tion of the diffusion-adsorption model in higher dirnen-
sions, but the present comparison between simple and
generalized parking problems provides a theoretical basis

4 i I i t I i i i I I

0 1

Z

FIG. l. (a) Diffusion and adsorption of a hard disk onto an
interval of length h. The dashed curves indicate the boundaries
of the channel in which the center of the disk can diffuse and
x(h, z) is the width of the channel at height z (z =0 corre-
sponds to the absorbing boundary segment). (b) z-dependent
free energy associated with an effective one-dimensional
description of the diffusion in the channel illustrated in (a).
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h

FIG. 2. Variation with the interval length h of the rate of ad-

sorption per unit length as obtained from the Fick-Jacobs ap-
proximation, Eqs. (14)-(16), for z„=3 and 5 [k(h) is monoto-

nously decreasing for z„,~ 2.53].

to explain the recent results of Schaaf, Johner, and Tal-
bot [7] and Senger et al. [8].
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