## **Temperature Dependence of Characteristic Length for Glass Transition**

E. W. Fischer,<sup>(1)</sup> E. Donth,<sup>(2)</sup> and W. Steffen<sup>(1)</sup>

<sup>(1)</sup>Max-Planck-Institut für Polymerforschung, Postfach 3148, W-6500 Mainz, Germany <sup>(2)</sup>Technische Hochschule Merseburg, Fachbereich Physik, O-4200 Merseburg, Germany

(Received 30 December 1991)

The temperature dependence of the characteristic length for the dynamic glass transition in orthoterphenyl is determined, for the first time, from combined results of depolarized dynamic light scattering, photon correlation spectroscopy, and viscosity experiments. The length is found to vary according to  $\xi_a \sim (T - T_{\infty})^{-\nu}$ , where  $T_{\infty}$  is the Vogel temperature, with an exponent  $\nu = 0.69 \pm 0.06$  in the temperature region from  $T_g$  up to  $T_g + 80$  K.

PACS numbers: 64.70.Pf, 76.60.Es, 78.35.+c

The glass transition is at present a central problem of condensed-matter physics [1,2]. There is no generally accepted theory of it, and computer simulation cannot as yet overcome the time gap between the integration step of Newton's equation  $(10^{-14} \text{ s})$  and the scale of a real glass transition  $(\tau \gtrsim 10^{-6} \text{ s})$ . Three theoretical approaches can be distinguished. (i) A dynamic singularity at a critical temperature  $T_c$  far above the conventional glass temperature  $T_g$  is supposed by mode coupling theory [3]. (ii) Following prior work [4-6] there is a search for an underlying phase transition at the Vogel temperature  $T_{\infty}$ [7], far below  $T_g$ . (iii) A fluctuation theory directly referring to cooperativity and Williams-Landel-Ferry (WLF) scaling covers the whole region between  $T_g$  and the breakdown of cooperativity at a temperature  $T_x$ ( $\approx T_c$ ) [8].

The cooperativity concept, generally accepted to be essential, requires a characteristic length  $\xi_a$ . Both the phase-transition and the fluctuation approach predict a length according to

$$\xi_a \sim (T - T_\infty)^{-\nu} \tag{1}$$

with v=2/d (=2/3 in d=3 dimensions). Using fluctuation theory formulas the characteristic length at  $T_g$  was estimated from calorimetric data of the transformation interval to be  $\xi_a = 1-2$  nm [9]. There are also other indications for this order of magnitude: sensitivity of the glass transition to the thickness of the amorphous layers in semicrystalline polyethyleneterephtalate [10], and a sharp increase of viscosity and shear modulus of liquids in thin layers [11].

The size of a cooperative region,  $V_a \approx \xi_a^3$ , affects the viscosity  $\eta$  of a glass-forming liquid. Therefore in the following a method is proposed to determine  $\xi_a$  from a comparison of  $\eta$  with reorientational relaxation times  $\tau_{\text{DLS}}$  (from depolarized light scattering, DLS).

There is a well-known relation, originally suggested for dilute solutions, between  $\tau_{DLS}$  and  $\eta$ , the Stokes-Einstein-Debye formula [12]

$$\tau_{\text{DLS}} = V_h \eta / kT + \tau_0 \,, \tag{2}$$

with k the Boltzmann constant,  $\tau_0$  a time constant of the

order of picoseconds, and  $V_h$  the so-called hydrodynamic volume of the order of the volume of one molecule. Rössler [13] pointed out that Eq. (2) is not valid for the dynamic glass transition. A significant deviation from Eq. (2) in a  $\ln(\tau/\eta)$  vs  $T^{-1}$  plot below  $T_s$  is also observed [14] in ortho-terphenyl (OTP).

In Eq. (2) the relaxation time is caused by the viscosity of the liquid surrounding a given molecule. With regard to cooperativity we should leave this local picture and switch to a more thermodynamic or continuum approach. Starting from a Kubo formula, the viscosity is determined by the time correlation of shear stress [15], which implies a correlation time  $\tau_K$  [see Eq. (6) below] and a correlation length  $\xi_K$ ,

$$\eta = (kTV)^{-1} \lim_{q \to 0} \int \langle \sigma_q^{xz}(t) \sigma_q^{xz}(0) \rangle dt , \qquad (3)$$

where  $\sigma_q^{xz}$  is the spatial Fourier component of the shear stress fluctuation. The aim of this paper is to explain the experimental results with the postulate that this correlation length determines the characteristic length of the dynamic glass transition,  $\xi_K = \xi_a$ .

For this purpose we must connect  $\tau_K$  with the light scattering experiment [16,17]. The xz dielectric tensor fluctuation  $e^{xz}(t)$  important for DLS can be related [18] to the shear angle fluctuation  $\Delta \gamma(t)$ . In such a continuum approach the contrast factor is given by a Pockels constant, symbolically described by  $A = (\partial \epsilon / \partial \gamma)^{xz}$ . The shear stress  $\sigma^{ij}$  in Eq. (3) is related to the shear angle  $\gamma_{ij}$ by a constitutive equation. For the simplest case, a Maxwell element, we have  $\eta = G_0 \tau_K$ , and the steady-state compliance  $J_e^0$  is given [19] by  $J_e^0 = \tau_K / \eta$ . Generally, the relation between shear compliance J and  $\Delta \gamma$  is given by the fluctuation dissipation theorem

$$V_a \Delta \gamma^2(\omega) = k T J''(\omega) / \pi \omega , \qquad (4)$$

where  $\Delta \gamma^2(\omega)$  is the spectral density of  $\Delta \gamma(t)$  in the volume  $V_a$ . Integration of Eq. (4) yields for the mean-square value of the shear angle fluctuation,  $\overline{\Delta \gamma^2}$ ,

$$V_a \overline{\Delta \gamma^2} = k T (J_e^0 - J_g) \approx k T J_e^0, \qquad (5)$$

with  $J_g = \lim J(\tau)$  for  $\tau \to 0$ , and assuming  $J_g \ll J_e^0$ .

© 1992 The American Physical Society

(6)

Since [20]

$$J_e^0\eta = \int dt \, tG(t) \Big/ \int dt \, G(t) = \tau_K \,,$$

from Eqs. (5) and (6) we obtain

$$V_a \overline{\Delta \gamma^2} \eta / kT = \tau_K \,. \tag{7}$$

Finally we have to connect  $\Delta \gamma^2$  with the total depolarized intensity  $I_{VH}$  of light scattering. The dependence of the DLS on the correlation volume  $V_a$  is expressed by

$$I_{VH} = KA^2 \overline{\Delta \gamma^2} V_a^2, \qquad (8)$$

where K is a constant. One of the factors of  $V_a$  results from the fact that I for  $\mathbf{q} \cdot \mathbf{r} \ll 1$  is determined by an integral over the orientational correlation function  $\varphi(\mathbf{r})$ . Assuming scaling (also a property of the glass transition cooperativity [8]) this integral is proportional to  $\xi_a^3 \sim V_a$ . This can be seen from the simple example  $\varphi \sim \exp(-r/\xi_a)$ ,  $\int \varphi(r) d^3 r = \operatorname{const} \times \xi_a^3$ . The other factor of  $V_a$  results from the fact that we consider the scattering from  $V_a$  as representative for the whole sample.

With these assumptions we find from Eqs. (7) and (8)

$$V_a^{-1} = KA^2 k T \tau_K / \eta I_{VH} = K' T \tau / \eta , \qquad (9)$$

where  $\tau_K = \tau_{\text{DLS}} \equiv \tau$  is assumed, similarly as for the length  $(\xi_K = \xi_a)$ .

Experiments were carried out with ortho-terphenyl as a model substance. The details are described elsewhere [14,21]. Briefly, relaxation times are calculated either from Rayleigh depolarized scattering (0.5 ps-100 ns) measured by four Fabry-Pérot interferometers [14] or from photon correlation spectroscopy (PCS, 10  $\mu$ s-100 s) [21]. The viscosity was taken from Refs. [22,23]. The total intensity  $I_{VH}$  was found to be constant (±10%) after density correction in the whole temperature range (250-430 K). Therefore K' in Eq. (9) can be regarded as a constant.

To determine the exponent v in Eq. (1) we must have the Vogel temperature  $T_{\infty}$ . The WLF fit to the PCS times (> 10  $\mu$ s) results in  $T_{\infty}$  = 186 K, but including the suitable Fabry-Pérot data (> 1.5 ns) gives  $T_{\infty} = 215$  K (Fig. 1, [14]). As the experimental exponent v is heavily influenced by  $T_{\infty}$  we should try to narrow the  $T_{\infty}$  interval by comparison with other glass formers. The correlation is made in a  $X^a$  vs T plot with  $X \equiv T\tau/\eta$  and the exponent a = 1/3v, see Eq. (9) ( $V_a \approx \xi_a^3$ ). The X values calculated from the experiments vary from  $6.4 \times 10^{-7}$  K/Pa at  $T_g = 244$  K up to  $48 \times 10^{-7}$  K/Pa at  $T_s = 323$  K, i.e., by a factor of 7.5, large enough for a reasonable correlation. The small uncertainties of the  $\tau$  determination from spectra with varying width and from the change from shear modulus G [Eq. (6)] to the longitudinal wave modulus Mfor DLS can surely be neglected.

The powers  $X^a$  with a series of exponents *a* are linearly correlated with temperature. The intersections obtained with the *T* axis are called  $T_{\infty}(a)$  (see inset in Fig. 2).



FIG. 1. WLF fits for the glass transition in OTP. All data are from light scattering.  $\bigtriangledown$ , fast component;  $\Box$ , DLS;  $\blacksquare$ , PCS; \*, from  $\omega \tau = 1$  for Rayleigh-Brillouin spectra. Curve *a*: Only PCS data,  $T_{\infty} = 186$  K. Curve *b*: Common fit for  $\tau \ge 1.5$  ns,  $T_{\infty} = 215$  K.

We obtain, for example,  $T_{\infty}(0.6) = 217$  K and  $T_{\infty}(0.4) = 186$  K. These  $T_{\infty}(a)$  values are close to the  $T_{\infty}$ 's from the WLF fits quoted above. The corresponding fragility parameters  $F \equiv T_g/(T_g - T_{\infty})$  are F = 4.2 for a = 0.4 and F = 9.0 for a = 0.6. Compared to good glass formers with high fragility [24] such as polyvinyl acetate (F = 7.5) or 60/40 KCa nitrate (F = 7.0), and to low fragility glass formers such as As<sub>2</sub>Se<sub>3</sub> (F = 3.1) or B<sub>2</sub>O<sub>3</sub> (F = 2.7), it seems that F = 4.2 is too low and F = 9.0 is too high for OTP. Supposing that F is in the range  $F = 5-7 \equiv 6 \pm 1$ for OTP we find that the exponent a is ranging from a = 0.44 (for F = 5) to a = 0.53 for F = 7. This corresponds to a  $\xi_a$  exponent v = 1/3a ranging from v = 0.63



FIG. 2. Plot of  $X^a$  vs temperature T for a=0.48,  $X = T\tau/\eta \sim V_a^{-1}$  according to Eq. (9). Above  $T_s \approx 325$  K the data reflect local motions.  $\blacksquare$ , from PCS;  $\Box$ , from DLS. Observe that the transition to cooperativity at  $T_s \approx 325$  K is not marked by a change of the experimental method. Inset: Extrapolated  $T_{\infty}(a)$  as a function of the exponent a (see text).

(F=7) to v=0.76 (F=5). Taking a=0.48, for F=6, we have  $v=0.69 \pm 0.06$  corresponding to  $T_{\infty}=203 \pm 6$ K. The X<sup>a</sup> vs T correlation for this case is shown in Fig. 2.

An exponent v=0.33 that is sometimes connected to the Adam and Gibbs approach [25] (corresponding to a=1, i.e., to  $V_a \sim T - T_{\infty}$ ) would imply  $F \approx 50$ , beyond any experience.

The following are two implications of our result.

(i) Viscosity  $\eta$  and relaxation time  $\tau$  cannot simultaneously fit the WLF equation because Eq. (9) defines a transmission function  $V_a T \sim T(T - T_{\infty})^{-2}$  between  $\eta$ and  $\tau$  that will become singular at  $T_{\infty}$ . This fact completely fits into the fluctuation theory where WLF scaling means that the relaxation modes probed by different susceptibilities or transport coefficients may be different but are nevertheless guided by a common set of  $\ln(\tau)$  vs T curves (hyperbolas) with two common asymptotes, one being  $T_{\infty}$ .

Viscosity can also be compared with the self-diffusion D [26]. The product  $\eta D$  is not a constant; the function  $\eta D(T)$  can also be interpreted in terms of the characteristic length [26].

(ii) The characteristic length decreases for increasing temperatures. Consequently, at some temperature  $T_s$  the cooperativity volume  $V_a$  will become too small to define cooperativity at all. Obviously this happens for OTP at about  $T_s \approx 325$  K in the GHz range which is in agreement with the characteristic length of a few nanometers at  $T_g$  [9]. The temperature  $T_s$  is therefore to be interpreted as the onset of cooperativity of the molecular motion;  $T_s$  is therefore the upper temperature limit of the WLF scaling.

In summary, the temperature dependence of the characteristic length for the dynamic glass transition in OTP was found from light scattering (DLS,PCS) and viscosity experiments to be in accordance with  $\xi_a \sim (T - T_{\infty})^{-\nu}$  with  $\nu = 0.69 \pm 0.06$  between  $T_g = 244$  K and  $T_s = 325$  K. This result corresponds to the prediction ( $\nu = 0.67$ ) of the fluctuation theory approach for the glass transition, connecting this  $\xi_a$  behavior directly with WLF scaling for  $T_g < T < T_s$ .

The authors thank Dr. A. Patkowski, Dr. G. Meier, and Dr. C. H. Wang for discussions. One author (E.D.) is grateful for the kind hospitality at the Max-Planck-Institut für Polymerforschung in Mainz. Partial financial support from SFB 262 of DFG is gratefully acknowledged. **131–133** (1991)].

- [2] J. Jäckle, Rep. Prog. Phys. 49, 171 (1986).
- [3] W. Götze, in *Liquids, Freezing and the Glass Transition*, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991).
- [4] W. Kauzmann, Chem. Rev. 43, 219 (1984).
- [5] J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys. 28, 373 (1988).
- [6] M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979).
- [7] See, e.g., T. R. Kirkpatrick, D. Thirumalai, and P. G. Wolynes, Phys. Rev. A 40, 1045 (1989).
- [8] E. Donth, *Glasübergang* (Glass Transition) (Akademie-Verlag, Berlin, 1981); Acta Polym. **30**, 481 (1979); J. Non-Cryst. Solids **131–133**, 204 (1991).
- [9] E. Donth, J. Non-Cryst. Solids 53, 325 (1982).
- [10] C. Schick and E. Donth, Phys. Scr. 43, 423 (1991).
- [11] H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991); J. Van Alsten and S. Granick, Phys. Rev. Lett. 61, 2570 (1988).
- [12] D. Kivelson, in *Rotational Dynamics of Small and Macromolecules*, edited by T. Dörfmuller and R. Pecola, Lecture Notes in Physics Vol. 293 (Springer-Verlag, Berlin, 1987), pp. 1–14.
- [13] E. Rössler, Phys. Rev. Lett. 65, 1595 (1990).
- [14] W. Steffen, A. Patkowski, G. Meier, and E. W. Fischer (to be published).
- [15] J. P. Hansen and I. R. McDonald, *Theory of Simple Liquids* (Academic, London, 1986), 2nd ed.
- [16] B. J. Berne and R. Pecora, *Dynamic Light Scattering* (Wiley, New York, 1976).
- [17] C. H. Wang, J. Chem. Phys. 70, 3796 (1979); C. H. Wang and Q.-L. Liu, J. Chem. Phys. 78, 4363 (1983).
- [18] W. Hess (unpublished).
- [19] J. D. Ferry, *Viscoelastic Properties of Polymers* (Wiley, New York, 1980), 3rd ed.
- [20] See, e.g., F. R. Schwarzl and L. C. E. Struik, Adv. Relax. Processes 1, 201 (1968); M. Doi and S. F. Edwards, *The Theory of Polymer Dynamics* (Oxford Sci. Pub., London, 1986).
- [21] E. W. Fischer, C. H. Becker, J. U. Hagenah, and G. Meier, Prog. Colloid Polym. Sci. 80, 198 (1989); G. Fy-tas, C. H. Wang, and Th. Dorfmüller, J. Chem Phys. 75, 4247 (1981).
- [22] M. Cukierman, J. W. Lane, and D. R. Uhlmann, J. Chem. Phys. 59, 3639 (1973).
- [23] B. Gerharz, G. Meier, and E. W. Fischer, J. Chem. Phys. 92, 7110 (1990).
- [24] C. A. Angell, in *Relaxation in Complex Systems*, edited by K. Ngai and G. B. Wright (National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1985), p. 1.
- [25] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
- [26] M. Lohfink, F. Fujara, H. Sillescu, and G. Fleischer (to be published).

<sup>[1]</sup> Proceedings of 1990 International Discussion Meeting on Relaxation in Complex Systems [J. Non-Cryst. Solids