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Exact Fractal Dimension of the Loop-Erased Self-Avoiding Walk in Two Dimensions
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The fractal dimension of the loop-erased self-avoiding walk is shown to be identical to that of the

chemical path on equally likely spanning trees. This result is valid for arbitrary lattices and in all dimen-

sions. In particular, in two dimensions, using the spanning tree correspondence and the known results

for the Potts model from conformal field theory, the fractal dimension is shown to be exactly 4 as con-

jectured by Guttmann and Bursill.
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The self-avoiding walk (SAW) on lattices has been

studied extensively for many years as a model which cap-
tures the self-excluded volume effect in real linear poly-
mers. In the simplest model, all possible n-step SAWs
are assigned equal statistical weights. However, several
other SAW models, such as the true self-avoiding walk

[I], kinetically growing walk [2], and infinitely growing
self-avoiding walk [3], have also been studied. An in-

teresting variation is the one-parameter (rl) family of
random walks called Laplacian random walks (LRW) in-

troduced by Lyklema and Evertsz [4]. For rl=l, LRW
corresponds to the loop-erased self-avoiding walk

(LESAW) introduced by Lawler [5]. An LESAW is ob-
tained by erasing loops from the path of a simple random
walker as soon as they are formed. The average end-to-
end distance r of LESAW scales with the number of steps
n of the walk as r-n " *"for large n, where I jvLEsAw is

the fractal dimension of the walk. While vLqsAw is

rigorously known [5] to be & for dimensions d ~ 4 with

logarithmic corrections in d 4, no exact results are
available for d=2 and 3. Lawler has shown [6] that

vLEsAw is bounded below by the Flory exponent

vF 3/(d+2) of the usual SAW for d=2 and 3. Based
on numerical estimates, Guttmann and Bursill have re-

cently conjectured [7] that vLEsAw is —', in two dimen-

S1ons.

In this Letter, we study a model of growing trees intro-
duced by Broder [8]. We show that the chemical paths
on these trees (the chemical path between two vertices of
a tree being the unique path connecting them along the
edges of the tree) correspond to LESAWs. If these trees
are space filling, they form spanning trees with equal
probability. In fact, we show that the fractal dimension
of LESAWs is identical to that of the chemical path of
random spanning trees and this result is valid for arbi-
trary lattices in all dimensions. In particular, in two di-
mensions, using this correspondence and known results
for the Potts model from conformal field theory, we prove
the conjecture of Guttmann and Bursill.

Consider a t-step ordinary random walk W starting at
an arbitrary site 0 of a d-dimensional hypercubic lattice.
We first collect the set of edges corresponding to the last
exit of W from every site except the last visited site. This

set forms a tree Ttt(W) which Broder called the back-
ward tree at time t [8]. Similarly, the collection of the

edges corresponding to the first entry of W to every site,
except the starting site 0, forms another tree called the
forward tree TF(W) at time t. For example, in Fig. 1, we

show a 20-step random walk from 0 to R on a two-

dimensional square lattice. The numbers beside the
bonds indicate the step numbers and the arrows indicate
the directions of the steps. The corresponding backward
and the forward trees, at t =20, are shown in Figs. 2 and

3, respectively.
As the walk W grows with time t, the corresponding

trees Ttt(W) and TF(W) also grow. The forward tree
TF(W) has a frozen structure in the sense that any part
of the tree, once formed, remains unchanged for all sub-

sequent times. In other words, the bonds of the lattice
that are present in the tree at time t continue to remain
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FIG. l. A 20-step ordinary random walk 8' on a square lat-
tice from 0 to R. The numbers beside the bonds indicate the

step numbers and the arrows specify the directions of these

steps. P is an arbitrary site visited by the walker. The sites
marked by crosses are the yet unvisited nearest neighbors of the
visited sites.
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FIG. 2. The backward tree Ts(W) corresponding to the walk
8' in Fig. l. lt is the collection of edges corresponding to the
last exit of W from every visited site except the last site R.

FIG. 3. The forward tree Tr. (W) corr.esponding to the walk
8' in Fig. l. It consists of edges corresponding to the first entry
of H' to every visited site except the starting site O.

so at all later times. This is because the edges corre-
sponding to the first entry of the walk to the visited sites
do not change with time. The backward tree Ta(W),
however, does not have this property as the last exit from
a visited site may change when the walker comes back
there at some subsequent time. Because of this frozen
structure of the forward tree TF(W), its time evolution
can be viewed as a growth model in which new bonds add
to the tree as the walk proceeds. At a given time t, the
number of edges in the tree is equal to S, —I, where S, is

the number of distinct sites visited by W within t.
The growth of the tree is governed by the following

rule. Let R be the last site visited by the t-step walk W
(see Fig. I ). The tree can grow next along any of the
bonds that connect the already visited sites to their yet
unvisited nearest neighbors. Denote this set of bonds by
B( and the set of the nearest neighbors by G(. For the
walk W shown in Fig. 1 at t =20, the set G, consists of
sites marked by crosses. Then the probability P; that the
tree will grow next along the bond i is given by the proba-
bility that the walker, starting at R, will traverse the
bond i before traversing the set (B, —ij If X and Y.

denote, respectively, the visited and the yet unvisited ends
of the bond i, then from the general theory of random
walks [9] P; equals the component of —Vp at X in the
direction from X to Y along the bond i, i.e., P =p~ Py,
where p satisfies the equation

& p(r) =6, R,

with 6, R the Kronecker delta function and R the position
vector of the last visited site R. The boundary conditions
are given by p(r) =0 for all r 6 6, . Because of this La-
placian nature of the growth rule, the forward tree

TF(W) may be called the Laplacian tree.
Let P be any arbitrary site visited by the t-step walk W

(see Fig. I) and let Wop denote the part of W between
the starting point 0 at t =0 and the last entry to P. For
example, in Fig. 1, Wgp is a 13-step walk from 0 to P
and is represented by the sequence (1,2, 3, . . . , 13). We
now retrace this path Wgp starting from 0 and erase the

loops from the path as soon as they are formed, until we

reach P. To be precise, we move along the path Wgp,
check at every site on this path whether there is a se-

quence of steps from there leading to the recurrence of
the walk at that site, and, if so, remove that sequence.
For example, in Fig. 1 the two sequences of steps
in Wop, namely (1,2,3,4) and (6,7,8,9), form loops.
Once we remove these two sequences from Wgp,

(1,2, 3, . . . , 13), we are left with a LESAW that connects
0 and P and consists of steps (5,10,11,12,13). But, these

edges clearly correspond to the last exit of Wgp from

every site except P, and hence form the chemical path be-
tween 0 and P on the backward tree T8(W) (see Fig. 2).
Thus the chemical paths on the backward tree Ta(W)
consist of LESAWs.

I n a similar way, we now reverse the path Wgp,

(1,2, 3, . . . , 13), in Fig. I, i.e., consider the sequence

(13,12, 11, . . . , 3,2, 1), and erase loops while retracing
this reversed path from P to O. In Fig. 1, the sequence

(11,10,9,8,7,6,5,4) forms a loop on this reversed path and

hence is removed. This leaves us with the steps

(13,12,3,2, 1) which form a self-avoiding path between 0
and P. We call this path the loop-erased reversed walk

(LERW). Clearly from Fig. I the LERW between 0
and P consists of edges corresponding to the first entry of
Wgp to every site except 0 and hence forms the chemical
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path on the forward tree TF(W) between 0 and P (see
Fig. 3).

Now, suppose the trees are growing on a finite lattice
of L sites. Consider the forward tree TF(W) corre-
sponding to the t-step walk W. Because of the frozen
structure of TF(W), the chemical distance, i.e., the length
of the chemical path, between two vertices separated by
Euclidean distance r remains unchanged while the tree
grows. Also the chemical path is identical to the LERW.
Hence the average chemical distance n scales with r as
n-r ""'"" and this remains unchanged for all subse-
quent times while the walk W keeps growing. Now, in

the limit when the walk 8'covers the full lattice, i.e., no
site remains unvisited, the corresponding TF(W) forms a
spanning tree on the lattice and the LERWs become the
chemical paths on the spanning trees. Broder has shown

[8] that these forward spanning trees, generated from all

possible lattice covering walks, occur with equal probabil-
ity. If the average chemical distance n on equally likely

spanning trees scales with r as n-r "'",we immediate-

ly get v,h, vLERw. By simple time-reversal symmetry,
the backward spanning trees Ttt(W)'s are also generated
with equal probability and the LESAWs are identical to
the chemical paths on these random spanning trees. Thus
we get vLEsAw vi ERw = v,h, and this result is clearly
valid for arbitrary lattices in arbitrary dimensions.

Several results regarding random spanning trees are
known because of its connection to some other models of
statistical mechanics such as the random resistor network
[10], the q-state Potts model in the limit q 0 [10],and
the Abelian sandpile model [11]of self-organized critical-
ity. In fact, it can be shown that the bonds forming the
chemical paths on random spanning trees are identical to
the red bonds of the q-state Potts clusters, defined by
Coniglio [12], in the limit q 0. In particular, in two di-
mensions, by mapping the Potts cluster problem onto a
Coulomb gas problem and using conformal field theory,
Coniglio has shown [12] exactly that the fractal dimen-
sion DR(q) of the red bonds, for all q 6 [0,4], is given by

DR(q) (8g —3g + 16)/gg,

where

q -2+2cos(erg/2) .

Thus, for q 0, the fractal dimension of the red bonds
and hence that of the chemical path of random spanning
trees, df =1/v, h, , is 4 . This, together with vLEsAw
= v,h, , proves the conjecture that vLpsAw =

& in two di-
mensions.

If the walk W continues even after covering the lattice,
the corresponding spanning tree TF(W') does not change.
However, Ttt(W) keeps changing as the walk proceeds

each step after covering the lattice. As noted by Broder
[8], this generates a sequence of equally likely spanning
trees on the lattice. We note that this, in fact, is a very
fast Monte Carlo algorithm for generating an unbiased
sequence of spanning trees as it requires, at each step,
only local updating of the edges corresponding to the last
exit of the walk. This is faster than the previously sug-
gested algorithms [I 1]. This sequence generates two mu-
tually uncorrelated trees at an interval of O(t, ) steps,
where t,. is the covering time of the random walk and
varies as L" with logarithmic corrections for all d~ 2
[13]. Numerical results for statistics of spanning trees
generated by this algorithm will be published elsewhere.

I am grateful to Deepak Dhar for stimulating discus-
sions and many useful suggestions. I thank Debashis
Ghoshal for a careful reading of the manuscript.

Note added. —After this paper was submitted, it was
pointed out to me by G. Lawler that a similar connection
between LESAWs and spanning trees was obtained by
Pemantle [14]. However, the questions he asked are
different from those addressed in this Letter. I thank G.
Lawler for pointing out this reference to me.
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