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It is shown that local-field effects in simple metals and semiconductors couple the plasmon into the
large-wave-vector q particle-hole excitation spectrum, leading to a plasmon antiresonance (plasmon-
Fano resonance). The resulting structure is observed in inelastic x-ray scattering spectroscopy (IXSS)
of single-crystal Si for scattering vectors q along the (111) direction. The inclusion of exchange and
correlation effects is important to obtain good agreement between theory and experiment. Previously
unexplained structures in the IXSS of single-crystal Li for q along the (110) direction and of single-
crystal Be for q along {100) and (001) are also identified as plasmon-Fano resonances.

PACS numbers: 71.45.Gm

Structures in the excitation spectra of nearly-free-
electron (NFE) systems, such as simple metals and sp-
band semiconductors with wave vectors q beyond the
plasmon cutoff wave vector, have been of continuing
theoretical and experimental interest because of expected
exchange and correlation (xc) effects at large q (see, for
example, Refs. [1-4]). We demonstrate in this Letter
that a structure observed in inelastic x-ray scattering
spectroscopy (IXSS) of single-crystal Si is caused pri-
marily by dynamical local-field effects due to the inhomo-
geneity of the system. The agreement with experiment is
considerably improved when xc effects are’included.

To understand the effect we first consider the jellium
model. In the self-consistent-field (SCF) approximation,
the excitation spectrum consists of sharp plasmons for g
smaller than the plasmon cutoff wave vector ¢, and a
broad continuum of particle-hole (p-h) excitations which
shift to higher frequency w with increasing q.

In real systems such as simple metals and sp-band
semiconductors, the weak effective periodical potential
V(r) =X Vge'®" couples both types of excitations via
umklapp processes involving reciprocal-lattice vectors G.
The coupling strength depends on the size of the pseudo-
potential Fourier coefficients Ug; Vg=SgUg, where S¢g
is the appropriate crystal-structure factor. As a well-
known consequence, the plasmon can decay into p-h exci-
tations by interband transitions and by local-field effects,
resulting in a characteristic q-dependent linewidth and a
small q-dependent frequency shift [5].

The influence of the plasmon on the large-q p-h excita-
tion spectrum due to the coupling by the crystal potential
has not been considered previously. Here we report mea-
surements and calculations of the dynamical electronic-
structure factor S(q,w) for single-crystal Si in the large-
q regime to investigate this effect.

Simple metals and semiconductors serve as model sys-
tems where these effects can be analyzed by simple

means, but similar effects are present in more complicat-
ed systems such as noble and transition metals.

In recent years the large-q excitation spectrum has be-
come accessible to experimental investigations by XSS,
where both experimental details and the evaluation of the
data have been described elsewhere [6-8]. Using syn-
chrotron radiation from the DORIS storage ring, mono-
chromatized to 7.99 keV, we have measured S(q,w) of Si
for q along the (100), <110}, and (111) directions, with a
1.5-eV energy resolution and a q resolution of §q/q =0.1
for g values between 0.4 and 1.8 a.u. We had about
2000-3000 counts per measured point in the maximum of
the energy-loss spectrum. To obtain a complete frequen-
cy spectrum took about 10 h.

We found for a g range between 0.8 and 1.8 a.u. a
characteristic fine structure in the measured S(q,®)
spectra for q along Gy, which is absent in the corre-
sponding measured S(q,®) spectra for q along the (110
direction [9]. The triangles, for example, in Fig. | are ex-
perimental results for ¢ =1.25 a.u. [Fig. 1(a)] and for
g =1.45 a.u. [Fig. 1(b)] with q in the (111) direction.
The relevant fine structure is close to the plasma frequen-
cy and is characterized by a relative minimum followed
by a steep rise and a relative maximum. The magnitude
of the fine structure is apparent from a comparison of the
(111) points (triangles) with those for q along (110) [cir-
cles in Fig. 2(b)] or with those for q along (100) [circles
in Fig. 2(c)]. Squares in Figs. 2(b) and 2(c) show the
difference between the <111) and (110) spectra and the
(100) spectrum, respectively.

The theory, as derived below including xc effects [Fig.
2(a) and solid lines in Fig. 1], explains this fine structure
as a plasmon antiresonance or plasmon-Fano resonance
inside the p-h continuum. The dotted line in Fig. 1(a) is
calculated within the random-phase approximation
(RPA). We call this a Fano resonance because it arises
from the interaction of a discrete excitation (plasmon)
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FIG. 1. Dynamic structure factor for single-crystal Si for q
in the (111) direction as a function of w: (a) ¢ =1.25 a.u.; (b)
q=1.45 a.u. Triangles, IXSS data; solid lines, theory, Eq. (5),
including xc effects; dotted curve, RPA theory.

with an excitation continuum (p-h excitations).

The theory makes use of the fluctuation-dissipation
theorem and relates S(q,w) to the density-density re-
sponse function. This response function can be calculated
within the SCF approximation from the microscopic
dielectric matrix égg'(k,w) spanned by reciprocal-lattice
vectors. Exchange and correlation effects are included
approximately by a local-field factor G%(q) (not to be
confused with local-field effects due to inhomogeneity) of
the homogeneous electron gas. We obtain

2
S(q,0)= __f:gz_ Im[—¢é7'(k,0)1gq
4rengy

1
X [ 1-G°(k+G)|) ] (])

Here [¢ 7' (k,0)]gg is the GG element of the inverse of
the microscopic dielectric matrix which is defined by
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FIG. 2. Dynamic structure factor for single-crystal Si for
g=1.25 a.u. (a) Theory for q along (111): dotted line, p-h
spectrum [first term of Eq. (5)]; dash-dotted line, plasmon-
Fano resonance [second term of Eq. (5)]; solid line, total spec-
trum [Eq. (5)]. (b) Experiment: triangles, IXSS data for q
along (111); circles, IXSS data for q along (110); squares,
difference between experimental (111) and {110) spectra. (c)
Experiment: triangles, IXSS data for q along (111); circles,
IXSS data for q along (100); squares, difference between exper-
imental (111) and (100) spectra.

vk+G=4re?/|k+G|?, ng is the mean electron density,
and y°(k+G,k+G'";») is the independent-particle den-
sity-density response function. We have used the local-
field factor of Utsumi and Ichimaru [10], which satisfies
various requirements in the small- and large-q limits. If
G%gq) is neglected, égg'(k,w) reduces egg'(k,) and the
standard RPA [11] is recovered. The reciprocal-lattice
vector G in Eq. (1) is fixed by the requirement

q=k+G, 3)

which relates the scattering vector q to the crystal mo-
mentum Kk, confined to the first Brillouin zone (BZ), and
to the required G.

To understand the physical effect it is sufficient to cal-
culate S(q,w) within a two-plasmon-band model that
was previously used to study the occurrence of plasmon
bands near the BZ boundary in semiconductors [12]. In
this case the dielectric matrix is approximated by an
effective 2x2 matrix, which is then evaluated within the
NFE approximation. For simplicity we used a local
empirical pseudopotential [13] that is known to give, for
example, a good description of the plasmon line shape
[51.

For small q, i.e., =k and G =0, we obtain

hq? .- ]
S(q, =_nqg- — | , - 1
q.0) 4r2e2ng Im[ =& (k,0)oo 1-G%k)
—~ h : —_ Enn — 7 € €
= ——1—4”2e2n0 Im [ l/ [eoo GZ#OEOGEGO/EGG] ]
1
8 1-G%Gk)’ @

where we have suppressed the arguments k and o in the
elements of the dielectric matrix. The diagonal term égo
contains interband transitions, and the nondiagonal ele-
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ments provide the coupling to the short-wavelength densi-
ty fluctuations described by 1/égg, known as local-field
effects. The second line of Eq. (4) yields a proper de-
scription of the plasmon line within the one-plasmon-
band model [5] to which the two-band model reduces for
q well inside the BZ.

The theoretical curves in Fig. 1 are evaluated from Eq.
(1) for G=Gy, and the result obtained from the effec-
tive 2X2 matrix can be written in the form

2 - €GoE
f;qz Im L, G(;OG[_
4rce no EGG EGG
1
X——
1-G%(k+G]|)

Equation (5) provides the key to the understanding of the
plasmon-Fano resonance. The first term in the large
square brackets accounts for the p-h excitation spectrum;
the second term consists of a coupling function Fg(k,w)
= égofoc/€&G and a function that, according to Eq. (4),
describes the plasmon line. Fg(k,w) couples large
q=k+G (G=G,;) density fluctuations, i.e., p-h excita-
tions, to small k density fluctuations, namely, plasmons.
If Fg(k,w) were real and positive, we would simply have
a plasmon peak of weight Fg(k,w,(k)) superimposed
on the p-h spectrum. However, Fg(k,w) is complex
with negative real and imaginary parts. Whereas
Iml—é "(k,w) g0 is always positive, Re[— ¢ ™' (k,w)1oo
becomes negative for w > w,(k). This explains the be-
havior of the second term of Eq. (5), which is illustrated
by the dash-dotted curve in Fig. 2(a). As a consequence,
the coupled plasmon appears as an antiresonance with
some resonance behavior on the high-frequency side typi-
cal of a Fano resonance. When added to the p-h spec-
trum [dotted curve in Fig. 2(a)l, the resulting curve
(solid line) exhibits the structure that is observed experi-
mentally [see Fig. 1(a)]l. The Fano resonance experimen-
tally observed for ¢ =1.45 a.u. is in similar agreement
with the present theory. Again a steep flank close to the
plasma frequency w,(k) characterizes the S(q,w) spec-
trum. The low-frequency part of the spectrum could not
be calculated because the lower limit of validity of the
perturbation theory increases with increasing k. (Details
will be published elsewhere.)

Within the two-plasmon-band model we have also cal-
culated S(q,®w) from Eq. (5) for q along (110} with
G =Gy and for q along (100) with G=Ggo. The re-
sulting curve for q along {110) exhibits an extremely faint
antiresonance near the plasma frequency and is thus al-
most identical to the p-h curve [dotted line in Fig. 2(a)l.
For q along (100) the antiresonance is completely absent
because Vg,, vanishes. This is the justification for the
comparison of the calculated Fano resonance [second
term of Eq. (5)] with the difference (squares) of the ex-
perimental {111) (triangles) spectrum and the (110) and
(100) (circles) spectra in Figs. 2(b) and 2(c). The
squares are derived using a cubic spline interpolation of
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the experimental spectra.

We have also evaluated the dynamical structure factor
for Al and for Li in the large-q regime. In Al, the pseu-
dopotential is very small, leading to a narrow plasmon
line and a rather small coupling function Fg(k,w).
Hence it is presently difficult to observe the Fano reso-
nance in Al with the energy resolution attainable in
IXSS. Li is a better candidate, because it exhibits a
broad plasmon line like Si. Indeed, earlier IXSS spectra
[7] of Li (see Fig. 13 of Ref. [7]) exhibit structure in the
relevant (q,w) regime for q in the (110) direction. Clear
indications of Fano-like structures at frequencies near the
plasmon frequency are also present in earlier IXSS spec-
tra of Be, mainly for q in the (100) and (001) directions
within a g range between 1.0 and 1.4 a.u. (see Fig. 2 of
Ref. [8]).

The identification of this plasmon antiresonance is
essential in the discussion of the xc effects expected to be
particularly important for large q. As is demonstrated in
Fig. 1, the inclusion of xc effects improves the agreement
with experiment considerably, but they do not themselves
produce the structure, as has been suggested in the past
(3,4].

Finally we note some limitations of the present theory.
Although the plasmon-Fano resonance is properly repro-
duced, there is still some discrepancy between theory and
experiment on the high-energy side. The inclusion of x¢
effects via a static local-field factor [10] causes a consid-
erable redistribution of oscillator strength from the high-
to the low-frequency side of the p-h spectrum, but not
enough to give complete agreement with the experiment.
Note that no adjustable parameter has been used in the
calculation.

Furthermore, the p-h spectrum [first term in Eq. (5)]
has been evaluated in the free-electron approximation,
which contributes to the lack of fine structure in the
theoretical curves. This is not important to understand
the effect considered in this Letter, because the coup-
ling function Fg(k,w) is of order |Vg|>, whereas
[—é "(k,w)]go is of order 1/|Vg|? close to the reso-
nance. For w decreasing towards the energy gap, pertur-
bation theory becomes increasingly inaccurate and finally
breaks down. Thus the theoretical curves have been cal-
culated only for o= 6 eV.

We have shown that, even in NFE systems such as sim-
ple metals and semiconductors, the weak effective crystal
potential can give rise to considerable structure in the
large-(q,w) p-h spectrum, due to the coupling of a reso-
nant mode. Although the crystal potential is of primary
importance for the existence of the plasmon-Fano reso-
nance, the inclusion of xc effects is essential for a quanti-
tative understanding of the spectra.
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