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Interhyperhedral Diffusion in Josephson-Junction Arrays
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We study the phase space for arrays of coupled Josephson-junction oscillators which have coexisting
in-phase and antiphase attractors. Arrays with four or more oscillators have significantly diAerent at-
tracting sets from those with two or three: Continuous families of out-of-phase attractors can exist in-
stead of isolated ones. A new mechanism in the presence of small amplitude noise is proposed to account
for the observed transitions among diA'erent stable antiphase states, and the rarely observed transitions
between an in-phase and an antiphase attractor.
PACS nombcrs: 05.40.+j, 05.45.+b, 74.4G.+k, 74.50.+r
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Nonlinear dynamical systems with many degrees of
freedom have generated increasing attention recently.
Coupled oscillators such as Josephson-junction arrays are
of fundamental interest as examples of such systems.
Josephson-junction arrays are superconducting electronic
devices capable of generating oscillations in the 6Hz fre-
quency range, and have the potential of applications as
parametric amplifiers, high-frequency voltage generators,
and voltage standards [1-3],as well as for generation of
squeezed states in quantum electronics [4,5]. In these in-

stances, one cfishes that the junctions oscillate perfectly
in phase [1,6-10]. Recent studies [11,12] show that, due
to a dynamical symmetry, series arrays of point-contact
Josephson junctions are unusually sensitive to random
noise when shunted by a pure resistive load. In order to
achieve the stability of the in-phase state, it is desirable to
use an LC load.

When a series array of N identical point-contact
Josephson junctions is subject to a constant bias current
Itt and is shunted by an LC load, the governing dynamical
equations are, in dimensionless form,

jA +sinyp+ I =Ig, k =1, . . . , N, (1)
N

Ll+Q/C=g apl,
j~i

where pp is the phase difference in the electron wave
function across the kth junction, Q(t) =f'I(t')dt', and I,
L, and C are respectively proportional to the current, in-

ductance, and capacitance of the load. One important
feature of these equations is the presence of "global cou-
pling" wherein each oscillator is coupled with equal
strength to all others. Notice the equations are invariant
under permutations of the angular variables.

The in-phase (IP) state is defined by pt, (t) =+0(t) for
all k. Parameters can be adjusted so that this state is an
attractor [8]. There are also other types of out-of-phase
(OP) attractors in which each junction oscillates with the
same frequency, but yi. (t)epq(t) for all j &k. An exam
pie of an OP attractor is the antiphase (AP) attractor,
whose junctions oscillate with not only the same frequen-
cy, but also identical wave form. Moreover, in an array
of N junctions, the existence of one stable AP state im-
plies that there are (N —1)!of them, due to the equivari-
ant symmetry [9,13,14]. In a significant range of param-

eters, these two types of attractors coexist [8).
Recent numerical studies show that coupled nonlinear

oscillators with equivariant symmetry can suffer a noise

sensitivity that grows rapidly with the array size. It was

suggested that the underlying cause is a phenomenon

termed attractor crowding [9,13). Its basic notion is that

the existence of such a huge number of attractors can

lead to a noise sensitivity due to competition between

dynamical states. No matter how small the noise level,

there is a limit to the size of the array beyond which noise

corrupts the in-phase dynamical state. In order to under-

stand such an effect, a complete picture of all the attrac-
tors in the phase space and their basins is needed [9].

In this Letter, we study systems of Josephson junctions
described by Eqs. (1) and (2). As an effort to unfold the

complete picture, we locate the attractors and identify

their basins of attraction in the phase portraits. We show

that there is a significant difference in the attracting sets

between a system consisting of two or three junctions and

one consisting of four or more. The observed structure

for four or more junctions gives rise to a new form of
motion under random noise, which explains why AP-AP

transitions [8,13] are more readily seen than the rarely

observed IP-AP transitions.
To study the phase portraits, we use array sizes

N =2,3,4 and numerically integrate Eqs. (1) and (2) with

the following parameters: Itt =2.1, L =0.5N, C=0.5/N.

(The natural scaling [8] is so that the in-phase oscilla-

tions are independent of N. ) The dynamics rapidly col-

lapses onto a manifold whose projection onto the space

[pi, . . . , aN) is an N torus. Physically, the initial I and

Q relax rapidly to synchronize with the junction oscilla-

tions. Their wave forms then vary on a much slower

scale.
Figure 1 shows the phase portrait for the two-junction

array. We have used a set of transformed coordinates

xo ('p/ +v 2)/2, x
~

= (v 2
—

v ~ )/2. The rectangle shown is

actually the torus {0~ p~ ~ 2tt, 0(pq ~ 2tt) cut in a spe-

cial way. The xo axis points to the direction in which all

orbits proceed on the average. The top and bottom edges

are two copies of the IP attractor. The solid curve is the

AP attractor. The dashed curves are the repelling invari-

ant orbits, which also mark the basin boundary of the two
attractors.
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FIG. l. Phase portrait for two-junction array. xo=(w~
+p2)/2 and x~ =(p~ —p~)/2.

When more junctions are involved, the visualization of
the consequently higher-dimensional phase portraits can
be facilitated by considering the map defined by a Poin-
care section P=gpt//t/=tr(mod2tr). This map for the
two-junction array will be on a line segment (which is

dotted in Fig. 1). On the line segment lie an AP attrac-
tor, an IP attractor [two copies, corresponding to p
=(tr, tr) and (0,2tr)), and two repellers forming the basin
boundaries of the former two.

When no noise is present, except perhaps for a very
short transient, the dynamics with N junctions is observed
to stay within one of the (N —I)! regions of the JV torus,
each corresponding to an ordering of the phases. Because
of the symmetry, we need only consider one of these re-

gions to understand the whole picture. In particular, we

consider the canonical invariant region (CIR) [15] corre-
sponding to the condition p[ ~ p2 ~ ~ p/v ~ p[+ 2~
at the Poincare section P =x.

For the array with three junctions, we use the follow-

ing orthogonal set of coordinates: xo=P, x~ =p3 —(p~

+pq)/2, and x2=(J3/2)(pq —y~) [16,17]. Numerical
results for the Poincare section at xo=n of the CIR are
shown in Fig. 2. The three vertices of the equilateral tri-
angle are copies of the IP attractor. Near the centroid
lies an AP attractor. A repelling invariant curve enclos-

ing the AP attractor marks the basin boundary between
the two attractors. An orbit with initial condition near
and outside the curve is shown attracted to the IP state.
The earlier stage of this orbit is not resolvable from the
invariant curve (which is thus not plotted). Another orbit
with initial condition well inside the curve is shown at-
tracted to the AP state. The three edges represent the
states with two identical gg's. Each edge has a saddle
separating the orbits that go in opposite directions to the
(same) IP attractor. (Recall that the orbits are on a
torus. ) In fact, the former orbit gets near the saddle be-
fore being attracted to the IP attractor along the edge.
The Floquet multipliers at the fixed points are shown in

Table I.
For the array with four junctions, we use these four

orthogonal axes: xo=F, x~ =(—
p~ p2+p3+p4)/4, x2—

( 0 I+f2 0 3+v 4)/4, and x~=( —
v i+v z+v 3

—v4)/
4. As shown in Fig. 3, the Poincare section of a CI R is a
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FIG. 2. Poincare section of a canonical invariant region at
xo =n(mod2z) for the three-junction array. xo = (+~ +a~
+v'3)/3, x~ =e~ —(yi+p2)/2, and x~=(v3/2)(o~ —gi). The
three vertices of the triangle have (clockwise beginning with the
origin) p =(x,x, rr), ( —tr/3, 5tr/3, 5x/3), and (x'/3, tr/3, 7&/3).
The three sides correspond to (clockwise beginning with x~
axis) the states v~ =p~, y. =y3, and y~+2z=v~.

tetrahedron consisting of four identical isosceles triangles,
each having sides of lengths —,

' J3tr, & J3tr, and tr. The
four short edges of the tetrahedron represent the states
where three of the four yI, 's are identical; the two long

edges represent the states with two pairs of identical pI, 's.

The vertices are IP attractors having y =(tr, tr, tr, tr), (tr/2,

tr/2, tr/2, 5tr/2), (0,0,2tr, 2n), and ( —
rr//2, 3rr/2, 3rr/2, 3rr/2).

Numerical results show the existence of an attracting
one-dimensional set of OP states, i.e. , there is a filament
linking two end points, one on each of the two long edges
of the tetrahedron. Such filaments are sketched in Fig. 3.
This is topologically diA'erent from the three-junction
case. The OP curve represents a continuous (one-
parameter) variation between two degenerate OP states,
namely, p~ (t ) =p~(t ) =p3(t —T/2) =p4(t —T/2) and

J (t ) =p~ (t —T/2 ) =pq(t —T/2) =y4(t —T). Here T is

the period of the OP state. Notice that there exists a

In phase

0.935
0.935 [2]

0.935 [3)

) 4 0.935 [(/V —
I )]

Out of phase

0.876
0.9+ 0.4i

C.C. paIr'

c.c pair'
l [(iv —3)]

Saddle, repeller

l.089
& I

& l

On 4 short edges"
&I [2l

On % edges
& l [(tv —2)]

& l

"k =complex conjugate pair (0.9+ 0.4i at splay phase; — 0.876
[2] near degenerate OP).
"Two saddles on each long edge with A. & l; ) l [2].
9.=complex conjugate pair (0.9~0.4i at splay phase; — real

pair near degenerate OP).
Types of saddles on other edges more complicated [24].

TABLE I. Floquet multipliers k at difieren hxed points for
various array sizes N. The trivial multiplier X= I and a pair of
complex conjugate ~A, ~

—=0.05 have been omitted in each cell.
The multiplicity is shown in brackets.
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FIG. 3. Poincare section at xo x(mod2ir) for the four-
junction array. xo. i (~v'i+'e2+w3+v'4)/4, and x2, 3 ( —

wi

+'P2+ v3+'p4)/4. The three-torus is cut (and pasted) in a spe-
cial way and shown as four cubes. It is equivalent to six copies
of an invariant region such as the CIR sho~n, a tetrahedron.
The OP filament joining the two degenerate OP states is inside
the tetrahedron.

point on the attracting OP set which corresponds to the
AP (bona fide splay phase) [IO, I8-21] state wi(t) =+2(r
—T/4) -v 3(t —T/2) p4(t —3T/4). The OP basin
boundary is topologically equivalent to a cylinder enclos-
ing the OP filament. Within the cylinder, there is a one-
dimensional continuum (stack) of surfaces each having
(near the center) a stable OP state into which trajectories
spiral. Each surface also extends outside the cylinder,
and merges with other such surfaces at the four short
edges of the tetrahedron. On each of these edges, there is

a saddle similar to those in the three-junction case. On
each surface, the dynamics is similar to the triangle in the
three-junction case.

Table I shows the Floquet multipliers at different fixed
points. At each fixed point along the OP filament, the
complex conjugate pair of Floquet multip)iers is about 0.9
in magnitude. Orbits on the splay-phase surface appear
to undergo weaker attraction, whereas orbits on the
tetrahedron faces are subject to the strongest attraction
to the degenerate OP states. Towards the edges, the pair
of multipliers (at the filament) approaches a real number
as the OP state approaches the degenerate OP state [22].
The Floquet multiplier A, =l is a signature of linearly
neutral stability along the OP filament. It is a reasonable
conjecture that the stability between the surfaces should
also be neutral.

For N larger than 4, the Poincare section of the CIR is
an (N —I )-dimensional hyperhedron with N vertices
[17]. The behaviors at the IP and splay-phase fixed
points are simi)ar to those in the three-junction or four-
junction cases. The Floquet multipliers are shown in
Table I. The presence of (N —3) OP Floquet multipliers
li, = I (up to single precision machine accuracy) suggests
that there is a (W —3)-dimensional hypersurface of OP
attractor [23]. Each point on the OP attractor has a
two-dimensional surface as its own basin of attraction.

On each surface there is a repelling limit cycle. Inside
(respectively outside) the cycle, there is spiral motion to-
ward the OP (respectively IP) attractor. Details of the
phase portraits for a general N will be reported elsewhere
[24].

Under the presence of noise, the difference between the
three-junction and four-junction cases, though simple, is
a significant one. Specifically, we model the noise by
adding a random term Magi(t) to Eq. (I), representing
the noise current due to the individual junction resis-
tances. The gi(t) are independent 8-correlated random
functions with zero mean and unit variance; a is propor-
tional to the power of each noise source. Figure 4 shows
the diffusionlike motion along the filament from the AP
towards the degenerate OP state. We are now ready to
explain why it has been numerically observed under ran-
dom noise that the dynamics easily hops among different
stable AP states, but less so from IP to AP states [l3). In
particular, with at least four junctions, the latter requires
that the noise overcomes the attraction of the IP attractor
(and the repulsion of the basin boundary); while the
former can be achieved merely by motion along the neu-
trally stable continuum. An orbit initially at, say a
splay-phase state, can easily drift along the neutrally
stable direction to a degenerate OP state on the edge of
the hyperhedron, where several hyperhedrons meet. It
can then easily drift further under diffusion into another
hyperhedron along another neutrally stable direction.
We call this effect the interhyperhedral diffusion In.
fact, the diffusion is due to noise which causes the system
to random walk all over the web of OP filaments. What
happens physically, in the four-junction case, for in-
stance, is that four OP filaments meet at each degenerate
OP fixed point (see Fig. 3), corresponding to two possible
symmetry breakings for each pair of degenerate junc-
tions. If the noise kicks the system into a state along a
filament other than the one the system came from, there
will be a switch in the ordering of the oscillators. This
phenomenon, while not deterministic because noise is in-
volved, is similar to Arnold diffusion [25] in the sense
that it occurs only in sufficiently high degrees of freedom.
Numerically simulations verify that an AP-AP transition
is relatively easily observed as opposed to an IP-AP one.
We predict that the effect can be seen also in experiments

0 degenerate OP
, ~ IP

FIG. 4. DiA'usion under random noise along the OP attractor
in the Poincare section at xo=n(mod2x) for the four-junction
array. Succession points are connected to facilitate visualiza-
tion.
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possessing similar symmetry invariants to Eqs. (I) and
(2), such as globally coupled laser systems [26,27]. More
general, but abstract, systems possessing generic equivari-
ant vector fields with N=4, also have invariant OP fila-
ments in the absence of noise [21]. We predict, therefore,
that interhyperhedral diffusion will occur in systems
where oscillators with N ~ 4 possess an equivariant sym-
metry. Other imperfect systems lacking symmetry in the
coupling also are observed to exhibit diffusion in the pres-
ence of noise [24].

Visualizing the phase portraits is very important in un-

derstanding the dynamics of coupled oscillators. As we

go from two junctions to three, four, and N, a more com-
plete picture is gradually unveiled. By focusing on one
CIR, which contains only [(N —I)!] ' of the OP at-
tracting set [28], we can now avoid the complexity due to
the multiplicity of OP states.

We have now also laid down the ground work to study
not only the effect of noise but also the effect of array size
under constant noise strength. This enhances the poten-
tial of understanding the cause of the attractor crowding
effect [9,13].
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