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We demonstrate that instabilities in a Hamiltonian system can occur via deformations that reduce the

symmetry of the system. The movement of eigenvalues at an equilibrium point of a family of Hamiltoni-

an systems is constrained by the symmetry type of the system. If deformations of a family change the

symmetry type, then instabilities can appear at multiple eigenvalues that produce large amplitude

changes in the system dynamics. We illustrate this phenomenon in the context of a low-dimensional

Hamiltonian normal form, and then analyze the instability of a vortex filament in a strain field.

PACS numbers: 03.20.+i

The concepts of stability in dissipative and conservative

systems are quite different. In dissipative systems a

steady state is stable if all eigenvalues of the linearized

operator have negative real parts. In Hamiltonian sys-

tems the spectrum is symmetric with respect to the imagi-

nary and real axes; therefore, a necessary condition for
stability is that the spectrum lies entirely on the imagi-
nary axis. Krein [l] described the movement of eigenval-
ues in generic, nonsymmetric Hamiltonian systems as
free parameters in a system are varied. Simple eigenval-
ues remain on the imaginary axis under Hamiltonian per-
turbations but multiple eigenvalues lying on the imagi-
nary axis split and leave the imaginary axis. The generic
theory of Williamson [2] and Galin [3] proves that the
passing of eigenvalues along the imaginary axis does not
occur in generic one- and two-parameter families of
Hamiltonian systems. However, the movement of eigen-
values in generic families of symmetric Harniltonian sys-
tems is aff'ected by their symmetry type (see Dellnitz,
Melbourne, and Marsden [4]). For example, for the
symmetry group S ' acting on R, the origin is always an
equilibrium and its eigenvalues always lie on the imagi-
nary axis. Therefore, multiple eigenvalues at the origin
pass along the imaginary axis in this case (Golubitsky
and Stewart [5]).

The next section describes a simple example we have

found of instability induced by symmetry reduction when

the symmetry group of a system is reduced from S' to Z2.

While the linear stability of the origin is affected only

slightly by the deformation, there are large magnitude

changes in other features of the system behavior. For the

motion associated to a vortex filament of an ideal fluid in

a strain field, multiple eigenvalues occur when varying an

axial wave number. When the symmetry is reduced from
S' to Z2 by imposing a strain field, we show how our

theory applies.
Steady Hamiltonian bifureations in R .—The group

S' acts on the Euclidean plane (with complex coordinate
A) by rotations. Vector fields that are symmetric with

respect to this action can be written in the form

f((A ~)A with f: R+ C. This vector field is

Hamiltonian if the values of f are pure imaginary. For
such a Hamiltonian vector field, the flow is along concen-
tric circles centered at the origin. The origin is always an

equilibrium and its eigenvalues are on the imaginary axis.
After a possible transformation of the parameter space, a
generic family with S ' symmetry can be written as
A =i(RA+a]A (A)+o([)iA(, [A [) with a, X E R. For
aA, &0, there is a circle of equilibrium points that col-
lapses onto the origin as A, 0. The flow on the remain-

ing circles near the origin is a rotation with angular fre-

quency that depends on radius.
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We consider perturbations that reduce the symmetry
group from S' to Zz, with the action of Z2 given by
A —A in the complex plane. Generic deformations of
an S' symmetric family that reduce the symmetry group
to Z2 can be written in the form

A =«(AA+aIA'-IA)+etbA+c(A ' —3AA )+dA 'j

+o(I~I, I).A I, IA -'I)

with A, ,a, e E R and b, c,d 6 C. By scaling A, t, and e, we
can assume that a= —

1 and b= —i if a and b are
nonzero, and that the system is a small perturbation of
A =«(» —IA -IA —~A)

There are three diAerent types of phase portraits of
A =«'(xA —IA IA —eA) encountered with varying It, and
fixed e&0. For X & —e, there is a single equilibrium
point at the origin, surrounded by a family of periodic or-
bits that fills the remainder of the plane. At X= —t. , the
origin has a double zero eigenvalue and splitting of the ei-
genvalues occurs. In the range —e & A. & e, the origin is
a saddle, and its separatrices form a figure eight. There
are two stable equilibria on the Im(A) axis that bifurcat-
ed from the origin. At k=a, another bifurcation occurs
and the origin becomes stable again. A pair of saddle
equilibria bifurcate from the origin along the Re(A) axis.
The separatrices of these equilibria form a figure topolog-
ically equivalent to two circles intersecting at two points.

These separatrices divide the plane into four regions that
are neighborhoods of the three stable equilibria and
infinity. In two regions, there are stable equilibria on the
Im(A) axis at Im(A) =+' Jk+e. The family ol' phase
portraits obtained from this one-parameter family is
stable within the class of Z2 symmetric Hamiltonian sys-
tems, so perturbation of the family by reincorporating
neglected terms will not change the form of the bifurca-
tions that occur for small p. Figure 1 shows the three
diA'erent types of phase portraits.

Comparing these phase portraits for the Z2 symmetric
normal form with the ones in the S' symmetric case, we
see that there is a continuous evolution of a stable equi-
librium of gro~ing amplitude beginning with X. = —~.
Fluid systems have some dissipation, so we investigate the
addition of damping to the model. The model becomes
A =«'(XA —IA IA —eA) —bA. If the damping coeS-
cient 6' is small compared to the coeScient t. of the
symmetry-breaking deformation, the bifurcations of the
model with varying k are essentially unchanged. There
are two pitchfork bifurcations at the origin. The stable
equilibria of the Hamiltonian system become sinks and
the saddle separatrices form the boundaries of the basins
of attractions of the sinks. In the parameter region in

which there are three sinks, numerical computations indi-
cate that the basin of attractions of the nonzero sinks are
substantially larger than those of the origin (see Fig. 2).
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FIG. I. Hamiltonian normal I'orms A =i(XA —IA'-IA —A)
with (a) k = —

l .5, (b) X =0.I, and (c) A. = l .5.
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FIG. 2. Dissipative pertarbations A =i 0 A —IA IA —A)
—O. lh of the Hamiltonian normal forms with (a) k= —l.5,

(b) A. =O. l, and (c) X=1.5.
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Note that the addition of dissipation to S ' symmetric sys-
tems make the origin a global attractor with Lyapunov
function IA I .

Vortex instability induced by symmetry reduction.—We turn now to the physical problem of vortex motion
with the action of weak irrotational plane strain. Linear
stability analysis of this problem was considered by
Moore and Saffman [6] and Tsai and Widnall [7]. In the
absence of strain, a vortex of finite circular cross section
is stable. It becomes unstable by the action of weak irro-
tational plane strain. Moore and Saffman [6] find that
"from a mathematical point of view, we can associate the
instability with the degeneracy caused by two physically
distinguishable eigenmodes of the unperturbed vortex
having the same eigenfrequency. " Instability occurs for
wavelength and frequencies at the intersection points of
the dispersion curves of two distinct eigenmodes for an
isolated vortex. Moreover, these modes are coupled with
the geometric mode of deformation cos2&, sin2&. This
means that their azimuthal wave numbers satisfy Ini—nzl =2. The case n~ = I, nz= —

I is of special interest,
corresponding to bending waves in which fluid particles
are deflected oA' the axis in a fixed plane. The bending
waves have been observed in experiments (Fig. 3). We
use our analysis of instability due to symmetry reduction
to explain these observations.

The symmetry group of the undeformed vortex prob-
lem is S'xO(2). This reflects the fact that the problem
is invariant under rotations in the azimuthal direction
and under translations and reflections in the axial direc-
tion. We assume that the axial wave number k corre-
sponds to an intersection point of the dispersion curves for
an isolated vortex (see Tsai and Widnall [7]). There are
two eigenfunctions corresponding to the double zero ei-
genvalue: exp[i(p+kz)]ul(r) and exp[i(p —kz)tu2(r).
Let A and B be complex amplitudes corresponding to
these modes and [a,pj C S'xO(2). Then [a,pj acts on
the amplitudes (A, B) in the following way:

FIG. 3. Observations of a vortex filament in a strain field,
I'rom Vladimirov and Tarasov [8]. The experiments are de-
scribed in the text.

ta, Pj(A, B)=(exp[i(a+kP)]A, exp[i(a —kP)]8) . (I)
Also, we are allo~ed to interchange amplitudes 3 and B:

r(A, B)=(B,A).

Amplitude equations that respect (I) and (2) have the
form

dE
=SoA+A(silA I'+s IBI'-)+I o I,

=soB+B(szlA I
'+s

i 181')+ h o t. ~

dt

(3)

where h.o.t. in this equation and those below denotes
higher-order terms. We assume that the symmetry is re-
duced to S' to Zq in the azimuthal direction by the action
of weak irrotational plane strain. Then degenerate eigen-
values at the origin for which the eigenspaces are coupled
with the geometric mode of deformation produce split-
ting. New terms appear in the amplitude equations that
reflect the splitting. For the smaller symmetry group, the
normal form is

=soA+EpoB+A(SHIA I +s2181 )+e(plA 8+p2AB +p3IAI'8+p4181'8)+h o t. ,

=soB+&poA+8(»IAI +s|IBI )+i'(piB'A+pzA'8+p3181 A+p4IAI A)+h. o.t. ,
dt

(4)

with e a measure of the departure from full S'xO(2)
symmetry (e.g. , the eccentricity of elliptical cross sec-
tions). We note that the additional cubic terms are small
in comparison with the terms eA, eB, A IA I, A 181,
BIA I, and 8181'-. Therefore, we pass to a limit in which
Eqs. (4) become

dc 2=soC+ epoC+ (s i+san)CICI -+h.o.t.
dt

(6)

t Systems (4) and (5) have an invariant subspace A =8
On this invariant subspace, denote C=A =8 Then (5).
becomes

dt
=soA+epoB+A(silAI +S2181'-)+h.o.t. ,

d&
=soB+ epoA +8($21A I

-'+s
i IB I

') +h.o.t.

(5)

Equation (6) is the example treated above.
We relate this analysis to observations of Vladimirov

and Tarasov [8]. They studied a draining-vortex flow in a
cylindrical vessel with an elliptical cross section of small
eccentricity. A number of tests were conducted to mea-
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sure the instability of the vortex flow to bending motions.
In a typical experiment, a vessel containing water, filled

to the level L+hL, was set into a state of rigid rotation
with a velocity Q. Then a hole located at the center of
the bottom of the vessel was opened. A straight vortex
formed in the center of the cylinder and was made visible

by the introduction of dye. When the level fell to height
L, the hole was covered and the rotation was stopped.
After a short interval of time, the flow reorganized itself
from a draining vortex to one with a zero axial velocity
component. The vortex remained straight in certain
ranges of L, while in others there was instability manifest
in bending of its axis (Fig. 3). In all cases the bends in

the vortex core were stationary in the laboratory refer-
ence frame. The ranges of the cylinder heights for which

instability occurred were consistently longer than those
predicted by the linear theory. This fact is explained by
the Hamiltonian unfolding shown in Fig. 1 since the non-

trivial steady states occur for so & —
t.'po.

Discussion. —Instability induced by symmetry reduc-
tion is a new, general phenomenon we have discovered in

Ham iltonian and weakly dissipative systems. Normal
form analysis that takes into account the eAects of sym-

metry can explain how small symmetry reduction results
in large magnitude changes within a dynamical system.
We have applied such an analysis to account for instabili-
ties of a vortex filament in a noncircular cylinder.
Though we illustrated this eAect with one simple exam-

ple, there are many examples of instabilities of Hamil-
tonian systems induced by symmetry reduction. For ex-

ample, if one allows axial flow in the vortex experiments
described above, the bifurcation shifts to nonzero points

along the imaginary axis and we have "Hamiltonian
Hopf bifurcation. " Splitting of eigenvalues due to sym-
metry reduction occurs at this Hamiltonian Hopf bifurca-
tion when a strain field is imposed by deformation of the
cylinder.

The research of J.G. was partially supported by the
National Science Foundation and the Air Force 0%ce of
Scientific Research. The research of A. M. was partially
supported by the National Science Foundation, DMS
89-19074 and CTS 89-06343. We would like to thank
Phil Marcus, Jerry Marsden, and Vladimir Vladimirov
for very helpful discussions.

[I] M. G. Krein, Dokl. Akad. Nauk SSSR 73, 445-448
(1950).

[2] J. Williamson, Am. J. Math. 58, 141-163 (1936).
[3] D. M. Galin, AMS Trans. 2 11$, I —12 (1982).
[41 M. Dellnitz, I. Melbourne, and J. E. Marsden, "Generic

Bifurcation of Hamiltonian Vector Fields with Symme-
try" (to be published).

[5] M. Golubitsky and I. Stewart, Physica (Amsterdam)
24D, 391-405 (1987).

[6] D. W. Moore and P. G. SalTman, Proc. R. Soc. London A
346, 413-425 (1975).

[7] C. Y. Tsai and S. E. Widnall, J. Fluid Mech. 73, 721-733
(1976).

[8] V. A. Vladimirov and V. Tarasov, in Proceedings of the
IUTAM Symposium on Laminar-Turbulent Transition,
IVoi osibirsk, 1984, edited by V. V. Kozlov (Springer,
Berlin, 1985), pp. 717-722.

2260


