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Comment on “Universal Scaling of the Stress Field
at the Vicinity of a Wedge Crack in Two Dimensions
and Oscillatory Self-Similar Corrections to Scaling”

In a recent Letter, Ball and Blumenfeld [1] argue that
certain self-similar fracture patterns can be understood
by examining the stress fields surrounding a wedge. The
point of this Comment is that the linear elastic stress
fields around a wedge do not display the features that
Ball and Blumenfeld emphasize.

In the course of their argument, Ball and Blumenfeld
examine the stress fields around an infinite wedge with
opening angle 2(x—a). This problem is known [2] to
have solutions which are proportional to r™. Although
for the leading singularity near the wedge tip, m is real,
there exist solutions for which m is complex. The authors
of the Letter argue that these subleading oscillatory solu-
tions contribute to the creation of self-similar fracture
structures for crack assemblies of finite extent. However,
there are several cases in which a problem with a finite
wedge can be solved, and once one includes boundary
conditions at infinity the stress field does not have this
type of oscillatory character.

One such problem is that of the stress fields outside of
the shape formed by the intersection of two circular arcs.
This problem has an analytical solution found by Ling
[3], and graphs of the solution do not oscillate. More
general shapes can be examined by numerical methods.
For example, Fig. 1 presents pictures of the stress outside
a wedge described by the teardrop map

zw)=w(l —1/w)'*#, ()]

where w lies in the unit circle in the complex plane. Far
from the wedge, one imposes a uniform stress ¢, = 0.
An accurate numerical solution may be obtained by re-
placing z(w) with zy(w), its Laurent series up to order
w ~N. Then one has a type of problem that can be solved
by the methods of Muskhelishvili [4]. Ball and Blumen-
feld [5] have pointed out that the most interesting thing
to examine is the stress o), + 0o, approaching the tip
along the top surface of the teardrop. This principal
stress is shown as the lower inset of Fig. 1 for N =999,
0w=4, B=0.5 (so that Ball and Blumenfeld’s 2a/n
equals 1.5). Small oscillations can be detected, and are
brought out in the main portion of the figure, but they are
periodic in 7, rather than Inr, and have a wavelength pro-
portional to the radius of curvature of the wedge tip [6].

There is no numerical evidence that oscillating eigen-
functions for the infinite wedge problem are important for
coarse-grained assemblies of cracks of finite size. Howev-
er, Ball and Blumenfeld’s surprising assertion that stress
fields can oscillate along the faces of a wedge appears to
be correct if effects related to the finite curvature of the
wedge tip are taken into account.

The author acknowledges support from the Sloan
Foundation, and would like to thank R. C. Ball and R.
Blumenfeld for their gracious and productive correspon-
dence.
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FIG. 1. The lower inset plots the logarithm of principal stress
vs the logarithm of arclength r from the wedge tip along the top
surface of the shape depicted in the upper right-hand corner of
the figure. The shape is produced by the first N =1000 terms in
the Laurent series of Eq. (1), with B=0.5, and a stress at
infinity 0~ =4. The leading power-law singularity is in accord
with predictions for an infinite wedge. The small oscillations
visible in the inset are emphasized by differentiating the princi-
pal stress in the main part of the figure. The solid line corre-
sponds to N =1000, and the dashed line to NV =500; note that
the oscillations are essentially periodic in r, not Inr, and that

their length decreases with the wedge tip radius.
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