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Mode Selection in the Dynamics of Sheared Polymer Solutions
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We report transient light scattering measurements upon the cessation of shear for a semidilute poly-
mer solution under theta conditions. The polymer solution demonstrates two modes of relaxation for
concentration fluctuations in equilibrium. The transient measurements show that the mechanism that

couples the concentration fluctuations to the shear flow, and thereby enhances concentration fluctua-

tions, selectively enhances only the slower of the two equilibrium modes. This selective enhancement

generates a long-wavelength peak in the shear-enhanced structure.

PACS numbers: 82.70.Kj, 66.90.+r, 82.70.Dd

The coupling of elastic stress and diffusion in semidi-
lute polymer solutions can have dramatic consequences.
Near theta conditions, experiments in a wide variety of
systems have shown that macroscopic shear flow strongly
enhances concentration fluctuations and may, for suf-
ficiently strong shear, induce phase separation [1,2]. The
nonequilibrium structure of these systems has been mea-
sured by light scattering [3-6] and found to agree with

the basic symmetries of recent theoretical models [7-9].
However, the measurements reveal a very-long-wave-
length peak in the structure that is not accounted for
within the theory. Milner has suggested that the models
fail in this regard because they neglect the dynamics of
the sheared polymer solution [10]. In this paper, we ex-
plore the nonequilibrium dynamics of the shear-enhanced
concentration fluctuations by measuring the transient
response of the light scattering upon the cessation of
shear. While dynamic light scattering [11] shows that
there are two modes of relaxation for equilibrium concen-
tration fluctuations, our transient scattering measure-
ments reveal that the shear flow selectively enhances only
one of these modes. This selective enhancement gen-
erates the peak observed in the steady-state structure.

We perform our transient light scattering measure-
ments using a transparent Couette cell described else-
where [5]. Using this cell, we generate a steady shear
rate y and measure the relative scattering intensity,
1(q, y)/1(q, O), for scattering wave vectors q which lie in

the plane defined by the velocity v (x direction) and the
velocity gradient Vv (y direction). The direction of q is

described by P, the angle q makes with the x axis. The
design of the cell allows us to measure accurately the rel-
ative scattering intensity for 5 pm ' & q & 28 pm ' and
for any p. Below q=5 pm ', scattering from the cell
walls makes an accurate determination of 1(q, j)/1(q, O)
impossible. Fortunately, this does not seriously inhibit
our transient measurements, where we are concerned with
the time evolution of the scattering and not the magni-
tude of the effect.

Our sample is a semidilute solution of polystyrene (PS)
with a volume fraction &=0.04 dissolved in dioctylph-

thalate (DOP). The PS has a molecular weight of M
=1.86X10 and a polydispersity of M /M„=1.06. This
gives a radius of gyration of Rs —250 A and an overlap
concentration of &*-0.008. Thus, the solution is well

into the semidilute regime. The critical point for this sys-
tem is at T, =10.2'C and &„=0.02; the theta tempera-
ture is Ttt=22'C [12]. The bulk correlation length,
determined from equilibrium static light scattering mea-

surements, is given by g, =go(T/T„—1) '1, where go
=24 A. At 15.3'C, where most transient measurements
were performed, $„=180A. The long-wavelength, low-q

collective diffusion coefficient is D, =0.020 ~ 0.004
pm /s, which we measure with quasielastic light scatter-
ing (QELS). Measurements of the dynamic viscosity,
rl(ta), define a characteristic stress relaxation time, rR,
such that for corg&&1, g=go is a constant, and for
cong&&1, g-co . At 15.3 C, i'd=0. 57 s, where ig is

defined as the point where rl/rlo =0.7 (3 dB).
The transient response measurement cycle entails set-

ting an initial shear rate y; and allowing the system to
reach steady state. The shear rate is then abruptly
changed to the final shear rate yf. The scattering intensi-

ty 1(q, t) is measured for 10 s prior to and 50 s after the
change in y. The measurement cycle is repeated and the
signal averaged until a reasonable signal-to-noise ratio is

obtained. At small q, the number of cycles often exceeds
2000. We have established by independent means that
the shear rate changes in less than 0. 1 s while the mea-
sured relaxation times always exceed 0.5 s; this insures
that we are measuring a true step response. The data
presented in this paper were taken at T =15.3 C; we also
performed measurements at 11 and 25'C that show simi-
lar behavior.

The transient response in this system is much more
complicated at high shear (jrR & 1) than it is at low

shear (jrR ( I). At high shear rates, elastic effects be-
come important and the transient response of the polymer
solution is both anisotropic and nonlinear. In this paper,
we concentrate on the more tractable low shear behavior.
At low shear rates, the transient response of this polymer
solution is linear. We denote the normalized step
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response of the scattered intensity going from an initial
state y; to a final state yf as

i(q, y, i) r—(q, yf)~' q y yf, r
i(q, y, ) —1(q, yf)

so that @(q,y;, yi, t & 0) =1 and @(q,y;, yf, t +~) =0.
If the initial and final shear rates are low (yr R & 1), then
we find that @ is independent of j; and yf, i.e., the
response is linear. I n particular, we see the same
response for the initiation and cessation of shear. In ad-
dition, at low shear rates, N is only a function of q. That
is, 4& is independent of P even though 1(q, y) is a strong
function of both q and P [5].

In Fig. 1(a), we plot the transient scattering @ upon
the cessation of shear for a range of q along P =0' at an
initial shear rate of y;=0.6 s ' (y;rR=0.34). As a
reference, the initial steady-state scattering at y;=0.6
s ' is similar to the data presented for y=0.4 s ' in Fig.
2(a) of Ref. [5]. The curves are exponential fits,
exp( —I t), to the data. Within the error, there is no sys-
tematic deviation from the fits. In Fig. 1(b), we plot the
relaxation rate I [obtained from the fits of the data in

Fig. 1(a)] vs q . We also show the values of I obtained
from transient data obtained for P =45', these measure-
ments have been omitted from Fig. 1(a) for the sake of
clarity. At small q, the relaxation rate is roughly quadra-
tic in q; at large q, the relaxation rate saturates at I =1.7
s . If the relaxation mechanism were simply diffusive,

we would expect the data to fall along a straight line

(I a:q ). The saturation of I suggests a crossover to a
different relaxation mechanism at high q. The curve in

Fig. 1(b) is a best fit to the data using the empirical form

I „,= [1/D„,q + r „,l (2)

where D„, and r„, are the measured diffusion coefficient
and rate-limiting time, respectively. The values obtained
from the fit are D„, =0.017 ~ 0.003 pm /s and
=0.57~0.07 s. These values are in good agreement
with the independent measurements of the collective
diffusion coefficient at small q, D, =0.020~0.004 pm /s,
and the stress relaxation time, re =0.57 s. It should be
noted, however, that the 3-dB definition of the stress re-
laxation time is somewhat arbitrary. While these
enhanced Auctuations appear to be relaxing in a simple
diffusive manner at low q, the data suggest that the relax-
ation of local stress is the limiting factor at high q. The
crossover between these two regimes occurs at the wave
vector qg —= (D„rR ) ' =9.4 ~ 2.0 pm

' obtained by
equating the diffusive relaxation rate D„q and the stress
relaxation rate rR . This is the same length scale intro-
duced by Brochard and de Gennes (BD) to explain the
crossover between diffusive and gel-like dynamics in equi-
librium semidilute theta solutions [13].

To describe the dynamics of semidilute polymer solu-
tions, BD [13-15]use a two-fluid model in which the dy-
namics of concentration and stress Auctuations are cou-
pled. This leads to an equation of motion for the equilib-
rium polymer displacement, u(q, cp), of the form
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(iruyp/p)u =[K+M(co)]q'u, (3)

where ro is the frequency, pp is the mean concentration,
and p is the mobility. The osmotic bulk modulus K is re-
lated to the osmotic pressure II via K =lt t)II/t)&. The lon-
gitudinal gel modulus M(rp) is characterized by a simple
Debye response M(ro) =Mg[irorit/(I+irprz)], where

Mg is the elastic modulus of the transient gel. The
dispersion in M(ro) leads to different diffusion coefficients
in the low- and high-frequency limits. For emR(&1, one
obtains the familiar long-wavelength collective diffusion
coefficient D„—=pK/Pp. For rorR» I, the diffusion co-
efficient is modified by the elastic response of the tran-
sient gel to be D„—=p(K+Mg)/pp. The ratio of these two
diffusion coefficients, p= Dg/D, =1+Mg/—K, is a measure
of the relative strength of the elastic term. The two
eigenmodes of Eq. (3) obey the dispersion relations

FIG. l. (a) The normalized transient scattering response to
the cessation of shear for y;=0.6 s ' (y;rR=0. 34). The data
were taken for a range of q along P =O'. The curves are fits to
the data with exp( —I I) (b) The relaxa. tion rate I obtained
from exponential fits to the data for a starting shear rate of
j;.=0.6 s ' plotted vs q-'. The squares are for data acquired
along P=0' as is shown in (a); the solid circles correspond to
data acquired along i1=45', which has been omitted from (a)
for the sake of clarity. The curve is a best fit to the data using
Eq. (2).
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where I f(+) is the fast mode, I, ( —) is the slow mode,
and x=q/qs is the normalized wave vector. The approxi-
mate forms
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are valid asymptotically but break down near qg when

p —1&1. Both modes contribute to the relaxation of
concentration fluctuations probed by equilibrium light
scattering. The relative scattering intensity of the two
modes is given by

Af I I frR —
1

6
A, If 1

—I,rR

such that Af/3, , 0 as q 0 and Af/A, , (p —1)
as q ~. Thus, the intensity of the slow mode is 1

for q &qg and asymptotically approaches a value of
(p —1) ' for q»qg. In a good solvent, the osmotic
modulus is typically much larger than the elastic
modulus, i.e., Mg/K«1. Under such conditions, the
stress fluctuations eff'ectively uncouple from the concen-
tration fluctuations, and this result reduces to a single
diff'usive mode of the form I D„q . However, as theta
conditions are approached, the polymer begins to collapse
upon itself to the point where Mg and K are of compara-
ble magnitude, and the stress mode mixes into the dy-
namics of the concentration fluctuations.

Adam and Delsanti (AD) performed QELS measure-
ments on a range of polystyrene-cyclohexane solutions
under theta solvent conditions and found fairly good
agreement with the BD theory [11]. Likewise, we have
performed QELS measurements on our PS+DOP system
for a range of temperatures near Te. Our measurements
at 15.3'C show behavior similar to that observed by AD.
At low q ( & qg), we observe a single diffusive mode with

a diffusion coefficient D, =0.020 ~ 0.004 pm2/s. At high

q (& qg), the correlation function is nonexponential and
can be conveniently approximated by two exponential
modes. The fast mode at high q also behaves in a
diffusive manner and has a diff'usion coefficient Dg
=0.023~0.003 pm /s. The slow mode at high q is

essentially independent of q with a relaxation rate of
I, 1.4+0.4 s '. The relative intensity of the two
high-q modes is Af/A, =2.5+'0.7 for q»qg. This gives

p 1.4~0.4, which is consistent with Dg/D„=1.2~0.3,
as expected from Eq. (6).

In Fig. 2, we plot I vs q for the QELS measurements
and the transient-shear measurements. The transient-
shear data represent an average of the two sets of data
shown in Fig. 1(b). The curves are the BD prediction,
Eq. (4), for the two modes using D, 0.020 pm /s and
rz =0.57 s, obtained from our QELS and viscosity mea-
surements, and p=1.4, obtained from the relative intensi-

ty of the two modes at high q. The BD theory provides a
good description of the data. Furthermore, the relaxation
rates obtained for the shear-transient data are in general
agreement with the slow mode in the QELS measure-
ments. The most striking result, however, is that we ob-
serve only the slow mode in the shear-transient data, even

though both the slow and fast modes are clearly visible in

our QELS measurements. If the fast mode were present
in our transient measurements, it would be easily distin-
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FIG. 2. A log-log plot of I vs q for the shear-transient mea-
surements shown in Fig. I and for QELS measurements at
15.3 C on the same system. The shear-transient data are an
average of the two sets shown in Fig. I. For q'&50 pm ', the
QELS data are consistent with the existence of only the slow
mode. The two modes do not separate clearly in time until
q2&200 pm . The curves are the BD prediction, Eq. (4), for
the two modes assuming D, 0.020 pm'. Is, r g=0.57 s, and

p 1.4.

guishable in time from the slow mode for q ) 2qg and
would lead to observable deviations from a single ex-
ponential fit. Even if the fast mode were beyond our
bandwidth, we would expect a sharp drop in the transient
immediately after the shear flow was turned off. Howev-

er, we see no evidence of the fast mode. Thus, we con-
clude that the mechanism that couples the concentration
fluctuations to the shear flow, and thereby enhances con-
centration fluctuations, selects only the slow mode.

A theory of the shear-enhanced scattering developed by
Helfand and Fredrickson [7] (HF) and elaborated on by
others [8,9,16] proposes that the thermally generated
equilibrium concentration fluctuations are enhanced by a
coupling between the polymer concentration and the
shear flow through the concentration-dependent viscosity
and normal stress coefficients. Recent light scattering ex-
periments [3-5] confirm that the theory correctly predicts
the basic symmetries of the shear-induced structure fac-
tor S(q, y). However, there is a large peak at q =qs = 10
pm in S(q, y) that cannot be accounted for within the
HF theory [5]. Instead, the HF theory predicts that the
enhancement in the structure factor should grow approxi-
mately as q out to q —I/(, —100 pm '. Milner [10]
has proposed that the HF theory fails in this respect be-
cause it assumes that the stresses in the fluid respond in-

stantaneously to the local concentration fluctuations. In-
stead, there is a characteristic response time r n necessary
to induce the relative flow mechanism between the poly-
mer and solvent. Thus, the HF assumption is valid in the
limit of small q where the natural lifetime of fluctuations
is long compared to r R, and fails at high q where the nat-
ural lifetime of fluctuations becomes shorter than r R.
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Our measurements suggest that Milner's hypothesis
only partially explains the peak observed in S(q, y). The
major point of departure from Milner's suggestion is that
the relaxation rate of the slow mode never becomes fast
compared to rR, and yet there is still a peak. However,
Milner's suggestion can explain why only the slow mode
is selected by the HF mechanism. The relevant parame-
ter in the enhancement of a fluctuation at a given q is the
ratio of the stress relaxation time to the fluctuation life-
time, I"r g. If I r g & 1, then the growth mechanism acts
in the adiabatic limit and the HF result is recovered.
However, if 1 rR & l, then the fluctuation does not live

long enough for the mechanism to respond and the
enhancement is suppressed relative to the HF result. As
Fig. 2 reveals, the slow mode obeys I r R ( I for all q,
while the fast mode always obeys 1 rtt & 1. Thus, only
the slow mode is significantly enhanced by the shear. As
a result, we observe only the slow mode in our transient
measurements.

We suggest that the peak in the shear-enhanced struc-
ture results from a confluence of factors. The HF model
predicts that the enhancement of fluctuations should in-

crease as -q . This result will be modified in two ways.
First, the amplitude of concentration fluctuations in the
slow mode is a strong function of q [see Eq. (6)]. Thus,
the scattering amplitude resulting from the shear flow

will peak near the point where the product of q and the
amplitude of thermally generated fluctuations in the slow

mode is greatest. Since this amplitude drops precipitous-
ly for q & qs, the peak should occur near qs. Second, for
large q, the lifetime of fluctuations in the slow mode be-
comes comparable to r R, which further reduces the
effectiveness of the enhancement mechanism in accor-
dance with the Milner argument. This second factor may
affect the shape of the peak, but it should not alter its po-
sition.

These measurements show that the mechanism that
couples the concentration fluctuations to the shear flow,
and thereby enhances concentration fluctuations, selects
only the slowest mode in a semidilute theta solution.
Thus, our transient measurements relax with a single ex-
ponential for all q even though the equilibrium QELS
measurements relax nonexponentially. Within this con-
text, the BD model provides a useful description of the
salient features of the equilibrium dynamics and is con-

sistent with the transient scattering data. Furthermore,
the peak observed in the steady-state structure is a result
of the selective enhancement that we observe in our tran-
sient measurements. This selective enhancement can be
accounted for by assuming that the mechanism has a
finite characteristic response time rR. Clearly, a full
theoretical treatment of this phenomenon must include
both the bimodal nature of the equilibrium dynamics and
the finite response time of the enhancement mechanism.
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