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Quasienergies, Stark Hamiltonians, and Growth of Energy for Driven Quantum Rings
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We study time-dependent Schrodinger operators in Aharonov-Bohm geometries where the flux thread-

ing the hole increases linearly with time. We show that the quasienergy operator has, in these cases, the
same spectrum as the time-independent Stark Hamiltonian on the universal covering space. Combining
known results on Stark Hamiltonians with a theorem of Bellissard, we prove that the energy of a particle
on a ftnite ring, with smooth background potential, increases without bound as t

PACS numbers: 72. lO. Bg

Schrodinger operators that describe quantum particles
acted on by external time-independent electric and mag-
netic fields may or may not be time independent. When
the domain is simply connected, for example, for the Eu-
clidean space, there is always a choice of gauge so that
the Schrodinger operator is time independent. We shall
call this the Stark form of the operator. When the
domain is not simply connected, as, for example, in the
case of Aharonov-Bohm geometry, there is no time-
independent form for the operators describing (interact-
ing or noninteracting) particles driven by a time-
independent electromotive force due to a linearly increas-
ing flux threading the hole [I].

The Hamiltonians of classical mechanics, in contrast,
can always be brought into a time-independent form
when the external fields are time independent. The price
one has to pay for doing so is to replace the domain II
with a hole by its (universal) covering space 0', which is

simply connected and which is where the static potential
lives. Recall that the (universal) covering spaces of the
circle and the annulus are the infinite line and the infinite

helix, respectively.
The Schrodinger operators associated with time-

independent electric and magnetic fields on the (univer-

sal) covering space can always be brought into a Stark
form. However (unlike the case in classical mechanics),
it is not a priori clear what these operators have to do
with the original problem with the Aharonov-Bohm
geometry. Our purpose here is to show that the Stark
operator for the (universal) covering space is the quasien-

ergy operator for the Aharonov-Bohm geometry. (This
will be explained in some detail below. ) We shall then

apply this observation to give a proof which is both ele-

mentary and rigorous of the fact that the energy of a par-
ticle on a driven thin ring increases without bound for a
large class of background potentials and all initial condi-
tions.

For the sake of simplicity, let us focus on the one-

particle Schrodinger operator without magnetic fields on

n [2]:

H(t) = [—II V —ta(x)] + V(x),1

2m

Vxa=o, x E o.

The electric field, eE(x) =a(x) —VV(x), and magnetic
field (which vanishes identically on 0) are both time in-

dependent.
The magnetic flux threading the hole is linearly in-

creasing with time and we choose the unit of time so that
after t =1 the flux through the hole increases by the unit
of quantum flux. This sets the normalization of the loop
integral of the vector potential: ga(x) dx =2trh.

Since Vx a =0, a is locally the gradient of a function

1 x,
A(x, . ) =— a(x') dx'. (2)

A(x, . ) is (in general) a function of the (universal) cover-
ing space 0', where the Hamiltonian H(t) is related by a

gauge transformation to a time-independent Stark Ham-
iltonian. Indeed, let the gauge transformation be

G(t) —=expIi[tA(x, . )/lrt]I, (3)

A A+ V(x,. )+A(x, ) .
2m

(4)

V(x,. )+A(x„)is a periodic plus linear (equivalent to the
washboard) potential, on the covering space. Because of
the presence of a periodic potential, we dub such opera-
tors Wannier-Stark Hamiltonians [4].

The gauge transformation G(t) is well defined on 0
only for integer times and cannot be substituted in the
time-dependent Schrodinger equation, as is evident from

Eq. (4), where difl'erentiation with respect to time is tak-
en. It is then natural to ask what is the relation, if any,
between the time-independent Stark Hamiltonian Hqt„.,[,

on the covering space and the time-dependent one on the
ring.

The evolution generated by general time-dependent
Hamiltonians (including cases where E and B are time
dependent) can be reduced to considering time-inde-

pendent ones. In classical mechanics the price is that the
time-independent Hamiltonians are defined on a larger
phase space, where E and t are the additional conjugate
coordinates (see, e.g. , [5]). In quantum mechanics, the

where x,. denotes a point in O'. In the new gauge the
Hamiltonian has the Stark form [3]:

H,„„„=G(t).H(—t)G(t) —ihG (t)[|),G(t)]
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analogous procedure, due to Howland [6], is to enlarge
the Hilbert space to L (QSR), with elements y(x, s),
x 6 0, and s C R. On this larger (grand) Hilbert space,
with one extra coordinate, one considers the (quasiener-

gy) operator

operators appearing in Eqs. (1) and (5) one has

(Vy)(x,.) =V(x, )y(x, ),
[(—ihV —sa)y](x, . ) =( i—hV, y)(x, ),.
( —ih8.,y)(x,. ) =A(x, )y(x„).

(i2)

K= —i h8, +H(s) .

It has the property

exp[ —i(crK/h ) y] (x,s) =U(s, s —o)y(x, s —cr), (6)

where G=—G(1). This property is inherited by K. The
analog of the usual Bloch-type analysis then says that the
spectral analysis of K reduces to the study of the spectra
of K restricted to the spaces of "Bloch waves" in the s
variable. In particular, the analog of the periodic Bloch
waves, normalized as usual in L (OS[0,1]), are those
that satisfy the condition [8]

y(x, s+1) =G ty(x, s) .

Combined with Eq. (6) this gives

(8)

exp[ —i(K/h) y](x,s) =U(s, s —I )Gy(x, s)

=GU(s+ l,s) y(x, s) . (9)

We used U(t+ I,s+I) =GtU(t, s)G, which is a direct
consequence of Eq. (7). It follows from Eq. (9) that the
evolution U(s+ l,s) can be studied via the evolution gen-
erated by K [9].

We shall now show that K is unitarily equivalent to the
Wannier-Stark Hamiltonian Hst„.,p of Eq. (4), defined on

the covering space L (0').
The Zak transform [10] from the Bloch states in the

grand Hilbert space to the Hilbert space associated with

the covering space 0' is

pl
y(x, . )—=

~
ds y(x, s)exp[i[sA(x„)/hl[. (io)

x,. G 0' are the preirnages of x E Q. The inverse trans-
form is

y(x, s) = g y(x, )exp[ i[sA(x„—)/h]j .
1

preirnages of x

Equations (10) and (11) are compatible with the bound-
ary conditions, Eq. (8), and preserve the appropriate
norms.

It is a simple exercise, using Eqs. (10) and (11), and
the boundary condition, Eq. (8), to show that for the

where U(t, s) is the unitary propagation operator from
time s to time t for H(t)

In the case of Eq. (1), H(t) has the property of being
periodic up to unitary [7], i.e.,

H(t+ i) =G'H(t)G,

(i 3)
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It follows that K=Hs&„.,k, i.e., the Stark Hamiltonian is

the quasienergy operator. This is our main result and it

extends to interacting electrons as well.
There is a basic intuition from tunneling that says that

Stark operators do not have normalizable eigenvectors.
This intuition has been established rigorously for a wide

class of potentials [4,5, 11]. In particular, it is known that
in one dimension, if, e.g., V is twice differentiable, the
spectrum of Wannier-Stark Hamiltonians is absolutely
continuous —there are no normalizable eigenstates [12].

The question whether the energy of a particle in a
driven ring is bounded or not bears on the question
whether idealized rings (i.e., without inelastic processes)
provide a model for dissipation. Partly because of this it
had been studied by many authors, using various tech-
niques, including simulations and approximate and ana-

lytic methods. Some of these authors arrived at con-
flicting conclusions [13-15]. Recently, Gefen and Thou-
less [14] studied the growth of energy in driven rings by
considering Zener tunneling between the energy bands of
the (adiabatic) spectra of H(t). They have shown that
provided the gaps are random and uncorrelated, a
phenomenon related to Anderson localization takes place
in energy space which keeps the energy of the particle
bounded.

We shall prove that for a one-dimensional ring with

any smooth (twice differentiable will do) background po-
tential the energy will, eventually, run away. That this is

so can also be seen from localization theory if one takes
into account the asymptotic decrease of the gaps [15,16].
The ultimate growth of the energy is therefore something
that can be seen in more than one way. The point we

want to make is partly that of simplicity and rigor, partly
to settle an issue that had been somewhat controversial,
and mostly to illustrate the use of the relation between
the time-dependent Hamiltonian on the ring and the
Stark Hamiltonian on the line. The strategy is closely re-
lated to the one in [15] where Wannier-Stark Hamiltoni-
ans are studied. The basic tool is due to Bellissard [17]
originally devised for time-periodic Hamiltonians. It
makes use of two facts, that the Floquet operator M has
no (normalizable) eigenvalues, and that H(t =0) is

bounded below and has only discrete spectrum whose
point of accumulation is at infinity.

Let (ej), j= 1, . . . , ~, be the normalized eigenvectors
of H(t =0) with (ordered) eigenvalues E, Let
c(k,n)—:({eg (M"(y)(, with (y) an initial normalized
state of finite energy, M=GU(0, 1). By the completeness
of (e~.& and the unitarity of M,

g c(k, n) =1
I =0



VOLUME 68, NUMBER 14 PH YSICAL REVI EW LETTERS 6 APRIL l 992

for all integer n's. On the other hand,

1
N

lim —g c(k,n) =((et, )PPP)tlt)( =0,N, =o
where Ppp is a projection on the pure-point part of the
theorem (see [5]). The second equality is the stateme
U(n, 0) = (G t) "M" together with Eqs. (7), (13), and (14)

N N—g (tlt(n)iH(n)iy(n)) =—g (yi(M ) "H(0)M"
N n=o N n=o

where e —=(I/N) g„-opt, o=c(k, n) can be chosen as
small as one wants, and j and thus E~ as large as one
wants, provided N is large enough. This completes the
proof that the energy is unbounded.

We close this paper with a sequence of remarks, mostly
about open problems.

(I ) The proof does not provide information on the rate
of growth of energy: The Wiener theorem is "soft" and
gives no a priori information on the rate of convergence
to zero.

(2) It is instructive that the cases with infinitely large
domains remain open. The proof fails because H(t =0)
may have essential spectrum in which case E~ can get
stuck at finite energies even as j ~. From a naive

physical intuition it appears surprising that the energy
growth can be hindered when the (adiabatic) spectrum
becomes more dense (and ultimately is essential). An ex-
ample where something related happens is a one-
dimensional ring or radius R, with "random potential' V.

From the Landauer formula for conductance one sees
that (since the driving potential is independent of R) en-

ergy grows at a rate which decreases with R.
(3) Ao [15] gave a fascinating argument suggesting

that the Dirac comb (Kronig-Penney model) is critical;
that is, the spectrum is made of localized states for weak
electric fields, and has no localized states if the field is

large [18]. This would mean that for rings with the Dirac
comb potential the energy will remain bounded (in fact, it

will be an almost periodic function of time) for weak

driving.
(4) By adapting standard methods from the scattering

theory of Stark Hamiltonians [5,11] to the multidimen-

sional, and also multiparticle case, the spectrum would

have an absolutely continuous component. This would

mean that for lots of finite-energy initial states, the ener-

gy would grow. In fact, the basic intuition that "reason-
able" Stark Hamiltonians have no eigenvalues suggests
that this will hold for all initial states [19].
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