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Coulomb Gap and Transport in Classical Electron Liquid
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The lattice model of a classical electron liquid with the Coulomb interaction and zero kinetic energy is
considered. It is shown by both qualitative arguments and computer modeling that in this system the
Coulomb gap exists near the chemical potential. Arguments are given that this is true for the nonideal
quantum liquid as well. Nearest-neighbor hopping conductivity is studied at d=2. At low tempera-
tures, the conductivity mechanism is shown to be a many-electron diffusion. At very small external dis-
order, the crossover from the diffusion to percolation has been found.

PACS numbers: 71.55.Jv, 66.30.—h, 71.28.+d

In recent years many efforts have been made to study
an interacting electron gas in attempts to obtain a pho-
nonless mechanism for superconductivity. The starting
point in this field is usually the Hubbard model. I

demonstrate here an important role of the long-range
Coulomb interaction. Namely, I argue that in an elec-
tron liquid without any external disorder the same
Coulomb gap exists as in a disordered system, and that
the long-range interaction strongly aAects the transport.

The Hamiltonian of the spinless fermions, which is the
subject of the final discussion, is

2

H =Q J~a; aj+ & g (n; —1+K)(nj —I+K) .
i j i~j rlJ

We are considering the very nonideal case, when the in-

teraction is much larger than the overlap energy J;J.
Here n; =0, 1 are the occupation numbers. The average
occupation number or the number of electrons per site is

1
—K, where 0 & K ( 1. The charge of the electrons is e.

The system is neutral, because each site has a positive
charge (I —K)e. Thus, the total charge of a site is

(I —K)e if n; =0 and —Ke if n; =1. This is a lattice
problem, but the lattice properties are minimized if
1
—K(& l.
At low enough temperatures and at small J;J the sys-

tem has an ordered distribution of the occupied sites. It
is well known that the melting temperature is more than
100 times smaller than the characteristic energy of the
electron-electron interaction for d=2 and d=3 [1,2].
Thus, the liquid remains strongly nonideal in a large
range of temperatures.

The aim of this paper is to study the properties of the
liquid well above the melting temperature but still in a
very nonideal regime. We consider here the case when

the temperature is much larger than the overlap energy,
and give some arguments about the opposite case. If
T» J;J, the thermodynamic properties of the system can
be studied, completely ignoring the overlap. Then, one
obtains a still nontrivial Hamiltonian of the classical
charged liquid:

2

H„~= —, g (n; —1+K)(n~ —1+K) . (2)
&~J Iij

The Coulomb gap in disordered systems has been stud-

ied using a classical Hamiltonian [3]:

H =gttt;n;+Hd, (3)

where the external disorder is introduced by the set of en-
ergies p; randomly distributed within the interval
( —A, A). It has been shown that the density of states
(DS) G(e) of the one-particle energies

e; =P;+g (nj —
I +K)

j~i rij
(4)

has a Coulomb gap near the chemical potential EF with
universal behavior around this point. In the two-
dimensional case it has the form

~«) =(2/«4) I~ F.F I . — (5)

I think the same gap exists in the system with an inter-
nal disorder only (A =0). If a temperature is, say, twice
as large as the melting temperature, the correlation
length of the electron liquid should be of the order of the
average distance between electrons. In a liquid state a
potential coming from distances which are larger than the
correlation length can be considered as random. It is very
weakly correlated with the occupation number of the site
i This rando. m part of the potential in a liquid state can
be considered as the random energies p; in Eq. (3). This
is why I believe that the DS in such a liquid state has a

Coulomb gap of the same nature as in an externally
disordered system.

To support this point I have performed a computer
modeling of the system with the Hamiltonian (2), using
the Monte Carlo method. The program is basically the
same as we have used [4] for the Hamiltonian (3). At

first, electrons are randomly distributed on the lattice.
Then different electron transitions are performed with the
probability corresponding to the Gibbs ensemble at a
given T until the system comes to equilibrium. The time
average of the DS is calculated. Square and cubic arrays
have been considered with periodic boundary conditions.
A low-temperature run takes about an hour on a CRAY
Y-MP8/864.

Figure 1 shows the DS at K =0.8 for different temper-
atures. The array size L is in units of the lattice constant
l; energy and temperature are in units of e /I. The
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FIG. 2. Ohmic conductivity (in units yol) as obtained by

computer modeling as a function of temperature at K=0.9
(squares) and K=0.82 (crosses). The diamonds show the con-

ductivity at K 0.82 as calculated from the RWA [Eq. (7)]
with function F(r;, ) obtained by computer modeling at E =0.
The diamonds are only in those points where an essential
difference between two approaches has been found. At K =0.9
it has not been found.

In the 2D case the conductivity in the RWA has the
form [4]

2

cr= QF(r) )r;'j,
8TI 2

(7)

where F(r;i) is the probability of the transition i j at
zero electric field, and the sum includes only the four
nearest neighbors on a square lattice. The conductivity
has been calculated independently from Eq. (7) using

F(r;, ) as obtained from computer modeling at zero elec-
tric field. The results are shown in Figs. 2 and 3. At
K=0.9 no reliable diA'erence has been found in the con-
ductivity as obtained by the current calculation and by
the RWA. At K=0.8,0.82 one can see the diAerence at
low temperatures, but it is not very large.

It is obvious that the RWA must work if the tempera-
ture is much larger than the energy distance between the
peaks of the DS. Then F =2K ( I —K ) and

o =yne K(l —K)/T. (8)

This explains the high-temperature behavior. Equation
(8) was used to test the program.

To explain the low-temperature results the following
mechanism is proposed. At 1

—K ((1 the energy
difference between neighboring sites is typically of the or-
der of W=(e /!)(I —K) i, because electrons are locat-
ed close to the minimum of the potential energy. Because
of the Coulomb field of other moving electrons this
diAerence fluctuates and sometimes it is very small. Elec-
trons hop in the moments of "fair weather, " when the
diAerence is not larger than a few T. These occur with a
probability of the order of T/W. Substituting F= T/W

.2.05 . 1
Temperature

FIG. 3. The same as in Fig. 2 at K=0.8. At T=0.05 the
conductivity with an external disorder (A & 0) has been calcu-
lated. The signs O, O, and + stand for the RWA.

into Eq. (7), one gets that conductivity is independent of
T. This mechanism is a many-electron diAusion.

The low-temperature value of the conductivity at
K =0.9 is larger than at K =0.82 (see Fig. 2). This is not

trivial because the carrier concentration at K=0.82 is

nearly twice as large. But it can be understood in terms
of the above mechanism. A simple scaling law gives the
low-temperature concentration dependence. The conduc-
tivity depends on the temperature through a factor T/W
only. Then it can be written as a product of two unknown

functions:

o =q(l —K)f(T/W), (9)

where q(1 —K) is independent of T, and f depends on

I —K only through W. It follows from Eq. (8) that

f(x) —I/x at x»1 and that q —I/v I —K. To provide
the low-temperature saturation of the conductivity, f(x)
should be constant at small x. Thus, we get that the
low-temperature conductivity is proportional to I/
v'I —K, in good agreement with the computer results.

Equation (7) is valid if each hop is independent of the

previous one. A simple estimate shows that the fair
weather deteriorates with high probability before the
electron can hop back. This is because the electron
"pulses" its neighbors, and their potentials change "the
weather. " However, this is not enough to provide the
diAusion in the ordered phase or in an externally disor-

dered system, where electrons "walk" around the equilib-
riurn positions only.

I suggest that the low-temperature drop of the conduc-
tivity and deviation from the RWA at K =0.8,0.82 (see
Figs. 2 and 3) is a result of proximity to the ordering.
The deviation is larger at K =0.8 because at this density
the ordered phase is a square lattice, and the melting

temperature should be larger than at K =0.82. At

K =0.9 this temperature is = J2 times smaller than at
K =0.8 due to lower density.

The crossover from a diflusion to a percolation process
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with an increase of an external disorder is also studied
here. Pollak and Ortuno (see review [5j) have argued
that the electron-electron interaction prevents using the
percolation approach in the theory of hopping conduction
in disordered systems. It is shown here that this is the
case for internal disorder only. In fact, the novel
diffusion conductivity is pinned by a very small external
disorder. The same computation has been performed us-

ing Hamiltonian (3) with very small A. The results are
shown in Fig. 3. At T=0.05 a dramatic decrease of the
conductivity with increasing A has been observed at 3
=0.05,0.1. The RWA yields results very far above the
data obtained by current calculations. The temperature
dependence has not been studied yet, but the data suggest
that an activation energy appears proportional to A. At
such a small A one cannot see any changes in the DS.
Thus, the random potential essentially does not change its
magnitude. The data show that pinning of soft models
with energy of the order T appears when A = T. This
means that in the presence of an external disorder the fair
weather is permanent in some parts of the lattice and it
never occurs in the others. Thus, an external disorder
prevents soft modes from participating in the dc conduc-
tivity, and the dc transport mechanism becomes a per-
colation process.

To summarize, the following results have been ob-
tained.

The Coulomb gap is shown to exist in a classical liquid
above the melting temperature. At lie —EF(»T the DS
is independent of T and is characteristic of the ground
state of the system. Coming back to Hamiltonian (I),
one can predict that the same gap exists in a liquid state
at T =0 if an overlap is the cause of a melting, provided

it is still much smaller than the interaction. The overlap
determines the DS near EF in this case, but far from this
point the DS can be obtained from the same classical
Hamiltonian (2). An important manifestation of the
Coulomb gap is the drop of the tunneling current at zero
bias.

The effect of many-electron diffusion has been found,
and the crossover from diffusion to percolation has been
studied. This may also be important for the diffusion of
interacting impurities on the lattice [6].
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