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Eff'ect of Singular Interaction Terms on Two-Dimensional Fermi Liquids
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The structure of perturbation theory for an interacting two-dimensional Fermi system is analyzed, in

the case where singular terms exist in the quasiparticle interactions. These give a hierarchy of singular
terms in the one-particle self-energy. The dominant terms are self-consistently summed, to give a quasi-

particle pole vanishing as Z(to) —(ta/tao)e' ' near the Fermi energy (signaling a breakdown of
Fermi-liquid theory), and u form for the scattering amplitude which is consistent with the assumed form
for the quasiparticle interaction.

PACS numbers: 67.50.—b, 67.70.+n, 71.10.+x, 72. 10.—d

[1,4]Until recently it was almost universally assumed that
the structure of perturbation theory for two-dimensional
interacting fermions was essentially benign, so that Fermi
liquids would exist in much the same way as in three di-
mensions. The remarkable recent claim of Anderson [1],
that this is not so, has thus generated enormous contro-
versy, and there are now a large number of papers in

print [2] which deny Anderson's claim, for one reason or
another. Anderson makes three main assertions, viz. , (i)
that the quasiparticle interaction function has a term of
the form

p' (p —p')

which is singular as p p' (forward scattering); (ii) that
this leads to a breakdown of Fermi-liquid theory, with a

(bg)r)
quasiparticle pole Z(ta) vanishing as ta, as the
quasiparticle to=(p —pF) vF goes to zero; (iii) that the
actual state of the system will be that of a two-di-
mensional "tomographic" Luttinger liquid.

Most arguments against these assertions [2] rely on the
apparent lack of any singular behavior in low-density ex-
pansions of the quasiparticle properties.

The present paper is mostly devoted to the second as-
sertion noted above. However, for completeness I briefly
outline why terms like (1) might exist in two di-
mensions —this question has been discussed in more de-
tail elsewhere [1,3,4]. The main body of the paper is then
devoted to deriving the eAects of these terms on the
quasiparticle properties. As we shall see, they are rather
subtle.

(i) Existence of singular interactions Anderson has. —
given a rather unconventional argument for the existence
of terms like (1) in the quasiparticle interaction function.
Although a form similar to (1) is found already in

second-order perturbation theory in the crossed channel
(by generalizing [3] the techniques of Ref. [5]), this form
has momentum-space restrictions which prevent any
drastic consequences from ensuing. In fact, provided one
uses the "Pauli-restricted" density of states in the
Lippmann-Schwinger equation, to give a wave function

~()-Ug " ()
q E (Ek+q+ Ek —g)

(2)

then we cannot get a form like (1). However, it is argued
by Anderson that in fixing boundary conditions and phase
shifts, we should not enforce the Pauli restrictions. This
immediately implies that the derivation of (1) is beyond a
purely perturbative argument (starting from a short-
range U). However, a nonperturbative derivation must
still be possible, and later in this paper we shall see that a
form like (1) is not necessarily in contradiction with the
exact results of Fabrizio, Parola, and Tosatti [2]. To do
this we must deriie systematically the nonperturbative
consequences of a singular df„„.Thus let us assume that
a (dimensionally correct) term

1 ~0

W(0)
p' (p —p')

Ip
—p'I'

exists in the quasiparticle interaction energy, and explore
its consequences. [ln (3), N(0) =m*/trh is the density
of states, and So is a scattering phase shift. ]

FIG. l. (a) The leading contributions to the low-energy be-

havior of Z(p, co) in two dimensions, ignoring all singular contri-
butions. g(q, v) is the fully renormalized dynamic susceptibility
(again ignoring singular terms). (b) The contribution to
X,(p, co) which is first order in g~p (indicated by a square ver-

tex). (c) The most divergent second-order contribution (in g«, )
to Z(p, co).
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(ii) l.ow or-der divergences .—The interaction bf» leads to drastic changes to the quasiparticle spectrum. To discuss

this systematically, let us first split up the total interaction function f» into its regular and singular parts,

f =f +g, and incorporate all renormalizations from f» into our basic vertices (as well as in the fluctuation prop-
PP PP PP '

agators and internal fermion lines). If we ignore g» terms, this then yields a two-dimensional Fermi-liquid theory; for

example, the diagram of Fig. 1(a) gives the lowest-order contribution to the regular part of the self-energy as [6]

m* )r(Ap) & &
p)p

Z(p, p)+i6)- —' —
1 tL) i

2
— p) +2p) ln

8v,'N(0) N
(4)

Here Ap is the relevant Landau scattering parameter
[7]. Higher-order regular contributions (which yield
to Inca contributions [8] in three dimensions) merely re-
normalize m here, as well as adding another p) term to
ImZ. Note that (4) is exact [6] at low a), if we ignore
contributions from g», all the (q, v) dependence of the
four-point vertex I has been incorporated into the fully
renormalized dynamic susceptibility g(q, v).

However, as soon as we add gp„vertices things change.

The lowest possible contribution is shown in Fig. 1(b),
and it gives

1m[a")Z(p, p)+ib)] =2 Ao I p)l . (s)
vF

Notice that this term has the same form as the
"marginal-Fermi-liquid theory" (MFLT) [9]. However,
it is only the first of many terms. The next contribution
is shown in Fig. 1(c), and has a logarithmic divergence:

Im[b, "'Z(p, p)+iB)] = dvg(gpss, gp qp)[I —rip, ]Imp(q, v)b(v —(p) —ep, ))

2
PF ~0

l
to

8h 'N(0) )r, p)p

where mo-q, .vF is produced by an upper momentum
cutoff q, . in the fluctuation propagator g(q, v); rt„—= ri(e„)
is the Fermi function.

Both iL
' Z(p, p)) and 6' Z(p, tp) indicate an apparent

breakdown of Fermi-liquid theory, although h, Z is
more serious. Clearly a proper understanding of their
effects requires that we incorporate g» to all orders in

Z(p, p)); as we shall see, logarithmic divergences come
from every even order in gpp.

(t'ii) Self consistent sum-mation The pro.—blem we are
faced with is somewhat analogous to that considered by
Nozieres et al. [10] and Anderson [11],in the Kondo and
x-ray edge problems —we must self consistently -sum all
divergent contributions to Z(p, p)). However, there are
two crucial differences —here the quasiparticle is indistin-
guishable from its fermionic brethren, and moreover it
can recoil (subject to Pauli restrictions). Anderson has
argued [1] that recoil is prevented by Pauli restrictions to
such an extent that the problem maps onto the simple
"orthogonality catastrophe" impurity problem [11],lead-
ing to a quasiparticle pole having the form specified in the
introduction, i.e., Z(p)) —(p)/p)o) . %Ye shall see

(bJ'~) 2

here that this form is not quite right; in fact, the correct
form coming from the dominant divergent contributions
to Z(p, p)) is

Z( ) ( / ) Ps@~/h ~N(o)

exp [[pbo/—h N (0)p)o] ln I p)/p)o II ~

(6)

I
where p=pF2/2nh2 is the number density of the system

[12]. There are also subdominant terms, which we will

come to presently. Formula (7) implies a breakdown of
Fermi-liquid theory.

I now sketch briefly the derivation of (7). Having al-

ready incorporated "Fermi-liquid" renormalizations into

all graphs for Z(p, p)+ib), we may now systematically
add the singular contributions gpp Thus for the contri-
bution of nth order in g„~, we add n gz„vertices to all

graphs for Z(pp)+i, b)in 'al, l topologically distinct ways.

It is not then immediately obvious how to extract any
information —nevertheless it can be done using the fol-

lowing theorem: The dominant divergent contributions to

ImZ(p, p)) in this theory are given by the sum of the
"maximally crossed" even order (in g„„)-reduced graphs
[13] for Z(p, p)).

Examples of such maximally crossed reduced graphs
are shown in Fig. 2; they are defined by the property that

the line cutting the relevant self-energy graph (and there-

by specifying a reduced graph) must cross every fluctua-
tion propagator g(q, v) in the graph. This theorem can

be verified by explicit calculation for orders up to fourth
order in g», and thereafter proved by induction [14].

It is then relatively easy to calculate the contribution to

Z(p)) coming from these terms, since the maximally
crossed reduced graphs can be factorized with a few

changes of variable; one then finds that
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A"'Z(, )A(2n)g(p ~) P
n!

dvg ' ' [I —
tI& —„]Imp(q, v)

t(ro Ep —q )

Notice that the term in curly brackets is just —8/tIco Re[A Z(p, to)]. Now one might naively try and extract Z(ro)
from this formula just by differentiating with respect to co. This would be incorrect, however, because we require self-

consistency —we must extract only the leading divergencies from tI/t)ro[Z(p, ro)], and these are not given by a straight-

forward differentiation of (8). Here we call on some well-known Ward identities. In particular [l51, one has

[I —t)Z(p, ro)/t)ro] =A (p, co), where A (p, m) is the three-point vertex A~(p, ro) [which describes the interaction with

an external field carrying four-momentum Q=(q, v)], in the limit Q 0, v/q ~ [Fig. 2(c)]. Again, only maximally

crossed graphs contribute, and we get

' nr

[Re~(p, ro)] = —g —
~

— d vg ' ' [I —tI„q]lmg(q, v) ~

8M q (ro —e )'
p

—
q

(9)

Now the quantity in the curly brackets can be evaluated
to give tIZ/tIro= —[pro/6 rooN(0)] In]co/roo( (plus other
less divergent terms). Then, since |I/tIro[ReZ(co)] = I

—Z '(ro), Eq. (7) immediately follows upon summing
the series in (9).

One may go on to consider the leading singular contri-
butions to the .-omplete four-point vertex I &z (k, e), and
to the thermodynamic potential O. The most important
question here is again one of self-consistency. Thus, we

may ask, is the form derived for I „~ (k, e) consistent with
our initial form for f&p (including g~z)? One may fairly
quickly demonstrate that it is. Summing again the dom-
inant (maximally crossed) contributions to I „„(k,e), we

find that it is renormalized by a factor Zz 'Zp ', coming
from vertex corrections similar to those in Fig. 2(c).
But a consistent calculation of f„„requires f„~
-Z&Z&l ~„(k,e)~&~),

' .o so that we just get back gp~.
Thus we have established that our theory is self
consistent.

We must still address the problem of the subdominant
singular contributions to Z(r0). We have already noted
the first such term [Eq. (5)], and it is clear that this is

only the first in a whole series [16]. However, not all sub-
dominant terms have this MFLT form —at higher order
in gpss, both )ro) and In(co/coo( terms will be mixed togeth-
er, and one cannot rule out the appearance of other kinds
of divergence.

Given the complexity of these subdominant terms, it
has not yet been possible to sum them (note that this can-
not be done simply using renormalization-group methods,
because of the highly nontrivial angular dependence of
g„~). Thus it is possible that the formula Z(ro) may
break down at very low co, if a new energy scale is gen-
erated by the subdominant terms —this question is

presently under investigation.
(id Comments and conclusions At this .—point two

questions naturally arise: (a) Why do the usual tech-
niques of low-density expansion [2] fail to recover these
results; and (b) can one further deduce the existence of a
tomographic Luttinger liquid?

It is clear from the calculations presented above that
ladder sums will not show the singular terms in their
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entirety —in fact, the basic ladder sum in Fig. I (a), con-
tains no singular terms at all. Thus the usual low-density
expansion technique of Galitskii [l7] fails in the presence
of singular interactions like (3). The zero-density results
of Fabrizio, Parola, and Tosatti [2] will presumably yield
(2) on functional differentiation, but again, it is then
necessary to consistently deal with singular terms to all
orders once this singular interaction has been obtained
[12]. However, we may now observe that the results
given here do not necessarily contradict the zero-density
results, because the factor of density p in the exponent of
(7) now makes the low-density expansion of (7) well-

(80ft')r) 2

behaved [this is not the case if Z(ro) =(ro/too) ", of
course]. Thus apparently one objection to the hypothesis
of singular interactions has been removed.

The second question is more di%cult, since the theory

(b)

FIG. 2. (a) Examples of some sixth-order (in g~„) maximal-

ly crossed reduced graphs; the dashed line shows the reduction,

made to cut all fluctuation lines. (b) Some graphs that are not

maximally crossed. (c) A corresponding maximally crossed

graph f'or 8/tfro[ReZ(p, co)], at sixth order.
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presented here merely indicates a breakdown of Fermi-
liquid theory —it does not show what will be its replace-
ment. The situation is somewhat analogous to supercon-
ductivity theory just before BCS—the instability to
Cooper pair formation was known, but it was necessary to
find a replacement ground state. Nor is it clear that this
will be a Luttinger liquid, since gpp still couples fermions
moving in different directions. Nevertheless, the con-
clusions one must draw from Eqs. (2) and (7) are
dramatic enough, for they indicate that a completely new

microscopic theory will be required to treat two-di-
mensional fermion systems with singular interactions.
Such a theory will have to "build in" the hierarchy of
singular terms described here, much as the Cooper pair
correlations were built into the BCS state. The present
paper has given a systematic way of doing this.

This work was supported by an NSERC-URF grant. I
would like to thank P. W. Anderson, G. Beydaghyan, B.
Dougot, M. Fabrizio, and N. Prokofev for useful discus-
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Note added. —The theorem in this paper, and the re-
sults such as (7) which depend on it, have now been
justified by a quite different (nonperturbative) method,
using the eikonal approximation [18].
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