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A standard model of glasses is shown to exhibit unexpected and remarkably simple elastic properties.
For a sequence of networks of decreasing degree or coordination z, the number of zero-frequency vibra-
tional modes (also called "degrees of freedom") increases as e =t~. A simple statistical model is given
which illuminates this behavior. In addition, the elastic constant c44 decreases as (z —zo)"; in certain
cases other elastic constants also exhibit this behavior. These simple functional relationships appear to
hold accurately for all z & zo, where zo is the critical average degree at which the elastic constants van-
ish.

PACS numbers: 63.50.+x, 62.20.Dc, 62.30.+d

Glasses and amorphous materials are tremendously
varied and complex. Yet many such materials can be
modeled simply as networks of atoms and bonds [I].
Phillips [2] and Thorpe [3] suggested that the elastic
properties of such networks depend primarily on a single
variable z, the average atomic coordination (e.g. , z =4 for
diamond). They predicted a transition from rigid behav-
ior, for z & zp, to "floppy" behavior for z &zp, with
zp=2. 4. The behavior of such networks has been exten-
sively studied in the critical regime (z = zn); but surpris-

ingly little is known about the dependence of the elastic
properties upon z in the regime most relevant to glasses
and amorphous materials, where z is significantly larger
than zp and the material is macroscopically rigid.

Here we show that, for a standard model of network
glasses, the important elastic properties depend on z in an

unexpected and very simple way. As z decreases, the
number of zero-frequency vibrational modes increases as
e ~, and a simple statistical model sheds light on this
behavior. At the same time, c44 (and in certain cases oth-
er elastic constants) decreases as (z —zn) '. Remarkably,
both of these forms superficially resemble critical behav-

ior, as discussed below, yet they persist far beyond the
critical regime.

We first recall the basic features of network models. A
network consists of a set of vertices, and a set of edges
(vertex pairs). The number of edges incident to a given

vertex is called the degree of the vertex. Here the ver-

tices represent atoms, the edges represent bonds, and the
degree corresponds to the atomic coordination, i.e. , the
number of bonds formed by the corresponding atom.

In the simplest model appropriate for glasses, the ener-

gy of the system depends on the lengths of the edges, and
on the angles between edges. (This is sometimes referred
to as the "bond-bending model. ") Although network ri-

gidity has been studied extensively in both mathematics
and physics for more than a century, most studies have
focused on the simpler "central-force model, "

in which

the angular forces are omitted [4]. However, this simpler
model is not directly relevant to glasses, or to covalent

NzFM ~ (6 ——. z)N, (2a)

where NzpM is the number of ZFM's. Mean-field theory
treats (2a) as an equality, except that there are always
three rigid translations, so

NzvM~ 3- (2b)

(We use periodic boundary conditions as discussed below,

so for a connected network there are. no free rigid rota-
tions. ) The crossover from floppy to rigid behavior, i.e.,

from Eq. (2a) to (2b), occurs at an average degree

materials generally.
There are two principal measures of elastic behavior.

First, the elastic constants describe the macroscopic
stifl'ness Sec.ond, the number of zero frequenc-y modes
(ZFMs) in the vibrational spectrum provides a comple-
mentary measure of local rigidity. The elastic constants
are defined as c„,=8 E/r)c„r)c„where E is the energy
and s„ is a uniform strain. ZFMs correspond to eigenvec-
tors of the dynamical matrix D having eigenvalue zero;
they form a complete orthonormal basis for the set of dis-
placements which cost no energy. Here D;~ r) E/
clx;Bxl, and x; and xl are any of the 3N variables specify-
ing the positions of the N vertices of the network.

To describe the energetics, we use a Keating potential
[5] which can be written as

E =a+(d;j'r;t) +Pg(d;l r;k+d;k r;l)
IJ ijk

Here r;t is the vector from vertex (atom) i to vertex j in

the undistorted (minimum-energy) structure; d;~ is the
change of r;~ in the distorted network; sums are over all i,
and all j&k sharing an edge with i; and a and p are
bond-stretching and bond-bending force constants, re-

spectively. We use values of a and p appropriate for car-
bon (diamond).

Some features of the elastic behavior can be readily un-

derstood within the mean-field theory of Phillips and

Thorpe [2,3]. Given a network of N vertices, each having

degree two or more, one can show [3,6]
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c cz: (z —zo) ". (4)

For each set, a line with slope v=1.40 falls nearly within
the error bars over 2 orders of magnitude. In particular,
c44 is described almost perfectly by Eq. (4). This accu-
rate power-law behavior is quite remarkable. We did not
expect it, since it was not observed in previous studies [7].

We have further examined whether the results depend
on the parameters of the potential (I). Note that, except
for an overall constant, the energy depends only on the

zo= —', —6/5JV, or zo =2.4 for hf

Numerical studies [6,7] show that these predictions are

remarkably accurate for z & zo. However, the same stud-

ies show that in reality, as z approaches zo from above,

NzFM increases smoothly, although it remains srnal) until

z=zo. Thus for z &zo, the mean-field theory is not

sufficient to explain the behavior of NzpM, moreover,
mean-field theory is silent on the behavior of the elastic
constants [8].

To gain insight into the elastic properties for z & zo, we

therefore resort to numerical experiments similar to those

of He and Thorpe [7]. We generate networks of decreas-

ing z by removing edges (bonds) at random from a

diamond-structure network with periodic boundary condi-

tions. Such "bond-depleted" networks have become a

standard model for glasses and disordered materials, be-

cause they permit the construction of a sequence of struc-
tures distinguished only by the average degree z. Of
course, this model is intended to describe behavior which

is generic to random networks. Some glasses may in ad-

dition exhibit behavior which is peculiar to their particu-
lar structure.

We begin by considering the elastic constants c„,. To
ensure consistent numerical precision even for z=zo,
where relaxation methods become less efficient, we ern-

ploy a direct algebraic approach, using the fact [9] that

t)'E ~ Bpn B.
Cpy

=
r)c&r)c„nr ~m

Here ~„refers to a strain applied only to the lattice vec-

tors which define the periodic boundary conditions, with

the coordinates of vertices within the cell kept fixed; A,„, is

the mth eigenvalue of the dynamical matrix D; and

B„Q~S~„,8 F/Bi„8x~, S being the matrix of orthonor-
mal eigenvectors of D.

Our results for three elastic constants are shown in Fig.
1; c~~, c44, and the shear constant c,=—(c~~ —c~2)/2 are
plotted against the average degree z. These results repre-
sent an average over nine independent values of each con-
stant for each z, corresponding to the three orientations
of each of three randomly generated samples with

N =216. The elastic constants vanish near 2.4, as expect-
ed.

Figure 1 (b) shows the elastic constants versus z —zo in

a log-log plot. Each data set closely follows a straight
line, which indicates that
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FIG. l. Elastic constants c/ I (top curve, squares), c44 (mid-
dle curve, circles), and c,, =(c~i —cia)/2 (bottom curve, dia-
monds). (a) Plotted vs average degree z on a linear scale. Solid
curve is spline fit to guide the eye. (b) Plotted vs z —zo on a
logarithmic scale, where z0=2.394. (Top scale gives z.) In

(b), squares have been multiplied by 5, and diamonds by 0.2, to
separate data for clarity. Error bars give rms scatter among
nine data averaged for each point.

ratio y—=P/a. We have repeated our calculations for
values of y ranging over 4 orders of magnitude, from

10yc to yc/1000, where yc is the value for carbon (dia-
mond). Here we only summarize the results of these ex-
tensive studies.

For this entire range of y, c44 obeys the power law, Eq.
(4), to within our numerical accuracy. The value of the
exponent v ranges from approximately 1.35 for y=10yp
to 1.89 for y= yc/1000. We know of no reason a priori
to believe that c44 obeys Eq. (4) exactly; and for the larg-
est values of y, there were deviations from Eq. (4) which

might be numerically significant. Nevertheless, our re-
sults are consistent with a power-law behavior of c44 for
all values of the potential parameters.

The other elastic constants exhibit more complex be-
havior. For either very small or very large y, c]] deviates
considerably from power-law behavior. Also, c, deviates
for large y; but it obeys Eq. (4) closely for small y.

It seems particularly intriguing that for parameters ap-
propriate for carbon, all three elastic constants obey Eq.
(4) so accurately over 2 orders of magnitude, with a sin-

gle value of the exponent v. It is difficult to believe that
such behavior can be a coincidence. In particular, the
power-law behavior of c44 over the entire range of y
strongly suggests the existence of an underlying principle.
We emphasize that this is not critical behavior, which
would give a power law with v independent of y. More-
over critical behavior is not expected except very near zo,
and not in such a small sample. Understanding the basis
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of the power-law behavior here should lead to deeper in-

sight into the elastic properties of glasses.
We now turn to the second elastic property of interest,

Nz~M, the number of zero-frequency modes of a network.
The presence of small numbers of ZFMs in macroscopi-
cally rigid networks (z ) zo) is of considerable impor-
tance in understanding heat capacity, and the scattering
of phonons and photons. Yet to our knowledge the num-

ber and nature of the ZFMs for z & zo has never been ex-
amined [lO]. In large part, this is because with tractable
cell sizes, for z & zo there are too few ZFMs to analyze
quantitatively.

NzqM should depend only on the network topology
[I I], and not on geometry or on a and P. Recently, one
of us introduced a new combinatorial algorithm for es-
timating the number of ZFMs directly from network to-

pology [6]. This algorithm permits the treatment of sys-
tems too large to handle with standard algebraic
methods; and though not exact, it gives a lower bound on

the number of ZFMs which is considerably more accu-
rate than the mean-field estimate. Here we have used it
to examine systems of size N =4096.

The results are shown in Fig. 2. For z) zo there is a
tail in Nzq. M, as in previous results for smaller samples
[6,7]. Here, with our large cell size, we can examine this
tail over 2 orders of magnitude. In the logarithmic plot
of Fig. 2(b), we see that the tail closely obeys a surpris-

ingly simple relationship,

(s)

over the entire range z & zo. The crossover from linear to
exponential behavior at z =2.4 is strikingly abrupt. Re-
sults of both trials are well described by Eq. (5), with
similar values of g (O. IO and O. I I in the respective trials).

Although we cannot yet fully explain this remarkable
behavior, a simple statistical model is quite illuminating.
In this model, we assume that the presence of ZFMs for
z & zo is due mainly to statistical fluctuations in the local
average degree in subregions of the network. %'e assume
that there is some characteristic size N such that the
mean-field estimate holds in any subregion of the network
of size N. (We later address the dependence of N upon
z.) To evaluate these Iluctuations, for a given average de-

gree z, we randomly sample a large number of sets of ver-
tices, of size N, from our N=4096 network. %e let

AzpM denote the average number of ZFMs per vertex,
obtained by applying Eq. (2) to each set of N vertices.
[Equation (2b) becomes NzFM) 0 for each subnetwork. ]

The results are shown in Fig. 3(a), with the data of
Fig. 2 superimposed for comparison. Clearly, for any
axed N, this model fails to capture the qualitative behav-
ior of NzpM, and shows no transition at z =zo. However,
intuitively we expect that N is closely related to the size
of the "floppy" subregions, which should be small for
z)) zo, becoming quite large as z zo.

In fact, if we compute the value of N which must be
assumed for each z to reproduce the data of Fig. 2, we
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FIG. 2. (a) Number of ZFMs (minus three uniform transla-
tions) vs average degree z, calculated as described in text. Cir-
cles and diamonds correspond to two different randomly gen-
erated networks. (b) Same results on a logarithmic scale. [One
data set (diamonds) has been multiplied by 10 to separate the
two sets for clarity. ] The dotted line corresponds to the mean-

field estimate (2), while the solid line, corresponding to an ex-
ponential dependence on =, is fitted by eye to the data for
=&zo.

FIG. 3. (a) Number of ZFMs per vertex, AzqM, vs a~erage
degree z, for the statistical model described in text. Each line

corresponds to the indicated value of N. Circles are results of
Fig. 2, for comparison. Dotted line is result obtained with
N=7(- —zo) ' [see (b)I. (b) Value of N which must be as-

surned, for each z, to reproduce the results of Fig. 2. Error bars
reAect statistical uncertainty due to our finite sampling. Dotted
line is a fit with power law, lV =7(z —zo) "". (c) Measure p
of the delocalization of the ZFMs [I 2], see text.

2174



VOLUME 68, NUN|BER 14 PH YSICAL REVI EW LETTERS 6 APRIL 1992

find that the inferred value of N accurately obeys a power
law for z) zo. The inferred value of N is shown as a
function of z in Fig. 3(b); the dotted line, corresponding
to N =7(z —zo), provides a nearly perfect fit to the
data for z & zo. This power-law divergence of the
characteristic size scale at z =zo is precisely what would

be expected for critical behavior. Ho~ever, it is surpris-
ing that the power law holds over such a wide range of z.

If we then calculate AzF~ from the statistical model,
assuming this power law for N, the result agrees very well

with the full calculation [dotted line in Fig. 3(a)]. More-
over, the exponential behavior is robust: If the power-law
exponent for N is reduced by 25%, the exponential behav-
ior of AzF~ survives, with g merely increased from 0.11
to 0.13. Thus this simple model confirms our intuition
that the behavior of NzF~ can be understood in terms of
two eAects: statistical Auctuations in the local average
degree, and the progressive delocalization of the ZFMs as
z~ Zo.

A striking feature of Fig. 3 is that the inferred value of
N peaks at zo, then decreases as z decreases further.
Presumably the sets of vertices that can move indepen-
dently with zero energy become smaller as z decreases to-
ward 2, accounting for the decrease in N. We can in fact
confirm that the ZFMs become most delocalized near
z =zo, by direct examination of the eigenmodes in a
smaller sample (N =216), where direct diagonalization
of the dynamical matrix D is feasible. Adapting a stan-
dard measure of localization (the "participation ratio")
to the case at hand, we have defined a measure p(z) of
the delocalization of the ZFMs as a function of z [12].

The results for p vs z are shown in Fig. 3(c). The
ZFMs clearly become most delocalized near z =zo, sup-

porting the statistical model with its inferred behavior of
N. (Whi]e p does not peak as sharply as does N, and is

slightly displaced from zo, this can be attributed to the
smaller cell size, and to the fact that the definition of p is
not unique. )

In conclusion, our numerical studies have uncovered
two surprising new relationships between the elastic prop-
erties of a network and its average degree z, i.e., the
atomic coordination. The number of ZFMs depends ex-
ponentially on z, Eq. (5), and the elastic constant c44

obeys a power law in z, Eq. (4). The power law (4) also
describes other elastic constants well, over a limited range
of parameters of the potential.

These equations are in effect "experimental" results,
and we do not claim that they are exact. Nevertheless,
the behavior is quite striking, and is intuitively reason-
able. Moreover, the exponential behavior of the ZFMs
can be understood within a simple statistical model, in

which the characteristic size N has a power-law diver-
gence at zo. We believe that these results illuminate an

important aspect of the behavior of network models
which has not been previously recognized, and we hope
that these results will provide guidance in developing a
fuller understanding of the elastic properties of disor-
dered materials.
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