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Dynamics of Slow Drainage in Porous Media
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Pressure fluctuations measured during slow drainage in a two-dimensional porous model exhibit sud-
den jumps that identify bursts where the invasion front proceeds abruptly. The pressure jump size distri-
bution is observed to be exponential. The nonscaling dynamics created fractal fronts and invaded re-
gions described by invasion percolation. A new modified invasion percolation algorithm includes invasion
dynamics. A capacitive volume associated with each interface throat results in a crossover from power-
law behavior to an exponential pressure jump distribution consistent with observations.

PACS numbers: 47.55.Mh, 05.40.+j, 47.55.Kf

Immiscible fluid-fluid displacement in porous media
generates front structures and patterns [1,2] ranging
from the compact to the ramified and fractal [3]. Fractal
structures are generated when a nonwetting fluid is in-
jected into a wetting fluid (drainage) at low injection
rates [1]. Recently both simulations and experiments
[4-6] were performed to examine the dyramics in the
high velocity, viscous fingering regime. At low injection
rates, where capillary forces dominate, few [6] experi-
ments studied the front dynamics. Simulations [7,8]
based on the invasion percolation algorithm [9] did not
have a physically realistic time variable.

Early qualitative observations [10-12] of slow displace-
ment dynamics showed that displacement occurred in a
discontinuous way. On the pore level the interface be-
tween the fluids deformed continuously for a while, but
occasionally the interface became unstable and many
pores were displaced in a burst [see Figs. 1(a)-1(c)].
These bursts were accompanied by sudden jumps in the
pressure difference (capillary pressure) between the in-
vading and the defending fluids, so-called “Haines
jumps” [10] (see Fig. 1). Thompson, Katz, and Raschke
[13] measured jumps in electrical resistance in mercury
intrusion experiments in three-dimensional porous media.
They found a power-law distribution of the resistance
jumps consistent with simulations [14,15]. However, not
all Haines jumps are observed, because injection into
dead ends of the mercury cluster are not observed in the
resistance.

In recent simulations of the dynamics of invasion per-
colation [7,8] a burst was defined geometrically as the
number of pores invaded from one pore on the interface
before invasion stops and continues elsewhere. The burst
size distribution was found to have a scaling behavior.
Roux and Guyon [8] introduced a new (hierarchical)
definition of bursts and found a power-law distribution of
the burst sizes, with exponents related to percolation ex-
ponents [16]. Gouyet [17] simulated drainage in a gravi-
tational field, and by considering fluctuations of the front
he obtained a similar burst distribution.

We present for the first time measurements and simu-
lations of pressure fluctuations during drainage of water
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by air in two-dimensional porous models. We also mea-
sured the intervals between pressure jumps corresponding
to bursts. The distributions of both pressure jump sizes
and intervals were not scaling but approximately ex-
ponential (see Fig. 2). We introduce a modified invasion
percolation algorithm that includes a capacitive interface
volume and models the constant rate experiment with a
physical time and pressure. Using parameters estimated
from experiments, we obtain distributions for pressure
jumps and intervals in good agreement with observations
(see Fig. 2). Moreover, we conclude from the simulations
that the observed exponential distributions are crossover
effects from power-law distributions (Fig. 3) expected,
for example, when the surface tension is decreased, the
pore sizes increased, or for larger systems.

In our experiments we used a 120x175-mm transpar-
ent porous model [4,5] that consisted of a random mono-
layer of 1-mm glass beads sandwiched between plastic
sheets. The model had a porosity ¢=0.7 and average
pore volume @ =2 mm?>. Water was withdrawn from one
short side of the model with a syringe pump at a low con-
stant rate of Q =0.048 pore/s. Pressure fluctuations were
measured with a pressure sensor of our own construction,
having a resolution of 0.1 mm H,O. An experiment con-
sisted of about 70000 pressure measurements taken at 1-s
intervals; see Fig. 1.

We observed that in periods when the water interface
was in capillary equilibrium, the extraction of water at a
constant rate did not immediately lead to air displacing
water from pores. Instead the interface was sucked into
narrower parts of the throats between the pores because
of the larger capillary pressure and invading air accumu-
lated on the air side of the menisci in the throats. The
capillary pressure is related to the radius of the front at
the position of the meniscus by pcap=o(R TR,
where o is the interface tension and R, and R, are the
principal radii of curvature. The capillary pressure in-
creased with time between jumps at an average rate
I =dpc,p/dt =Q/nsK, where n; was the length of the
front in terms of the number of pore throats in the front
[n,=4 and 9 in Figs. 1(a) and 1(b), respectivelyl, and
K ~'=dp.,p/dv, with dv=(Q/ns)dt the water displaced
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FIG. 1. (a)-(c) Invasion of air (white) into a two-di-

mensional porous medium filled with water. As water is ex-
tracted, the interface moves into narrower parts of the throats.
During a burst new pores are invaded and the interface adjusts
everywhere to the lower capillary pressure. The heavy black
lines show the redistributed volume. (d) Pressure in the water
during drainage as a function of time.

in a typical pore throat in time dt. For the results shown
in Fig. 1(d), K=5.5%10 "2 pore/mm H,O and n,=100.
The slight curvature in quasiequilibrium increases of the
capillary pressure is ignored in the following discussion.
When the capillary pressure exceeded the smallest capil-
lary pressure threshold of throats connecting invaded and
noninvaded pores, the front became unstable and invaded
through the weak (widest) throat. The displaced water
volume was distributed back over the front, the invading
air retreated everywhere slightly, and the capillary pres-
sure correspondingly decreased. At this stage the in-
vasion process continued if any of the freshly exposed
pore throats were unstable. Thus an instability at a given
pore throat could trigger an avalanche of pore invasions
with an accompanying abrupt decrease in the capillary
pressure [see Fig. 1(d)]. The avalanche ended when
capillary equilibrium had been reestablished. The pres-
sure drop had a time scale set by viscosity and was
effectively instantaneous for our experiment. The dynam-
ics of the process depended on the typical pore volume Q,
the number s of pores invaded, and details of the pore
geometry that determines how the displaced volume is
distributed over the front.

In Fig. 2(a) we show the cumulative distribution of
jumps in capillary pressure and in Fig. 2(b) the cumula-
tive distribution of the interval between pressure jumps.
The observed distributions are almost exponential and
well described by the simulations described below.

A square lattice of size L;X L, that consisted of nodes
(pores) connected by bonds (throats) represented the
porous medium in the simulations. The invasion process
started with all pores occupied by the defending fluid
(water) and with the leftmost column of pores invaded by
air. Bonds were assigned random numbers p; drawn from
a uniform distribution on [0,1] representing capillary
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FIG. 2. (a) Cumulative distribution of intervals between
subsequent bursts, X=T. Distributions in (a) are vertically
shifted by 0.4. (b) Cumulative distribution of pressure jumps,
X=P. Data from three different experiments are shown as
points, simulations as a solid line, and the exponential function
as a dot-dashed line. The best experimental fits by the function
Cexp(—BX) are p=1.27 in (a) and g=1.31 in (b).

pressure thresholds in the throats. As in ordinary in-
vasion percolation (IP) [9] one searched for the bond
with the lowest value of p; (p; min) among the bonds that
connect invaded pores to pores that are not invaded or
trapped. But contrary to ordinary IP a bond and the con-
nected site were not invaded at each time step. Instead
one increased the time variable before any invasion took
place by the time needed to increase the capillary pres-
sure from the present value (initially pcap=0) t0 p; min:
t =to+ (pj.min — Peap)iyK. The number of throats at the
interface ny was initially equal to the width of the system
L,. After a transition period the value of n, fluctuated
around a value [18] scaling with L, as nf~L?", with
D.=1.39.

A burst was defined to start as the widest available
bond with p; =p; min and the connected pore were invaded
after the capillary pressure had built up. In the new algo-
rithm all pores had been assigned a random number V;,
uniformly distributed in [+, 3] representing pore vol-
umes. This simple distribution gives an average volume
of 1, and is sufficient for modeling the nonextreme experi-
mental distribution which has an average pore volume.
The experimental volumes are always greater than zero.
The invasion of a pore with a volume V; resulted in a de-
crease in the capillary pressure to pcap=pi.min — Vi/nsK.
Again the available bond with the lowest value of the
capillary pressure threshold was found on the new front.
If this p; min Was larger than pc,,, the capillary pressure
had to be increased again, leading to a new increase of
the time variable and the beginning of a new burst. If, on
the contrary, pimin Was smaller than pc,p, this bond and
the connected site could be immediately invaded in the
present burst, leading to a further decrease of the capil-
lary pressure but no increase of the time. The burst con-
tinued until the capillary pressure was too small to invade
any of the available throats. Thus the total capillary
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pressure change in a burst is
= _‘ZV,/an ,
!

where the sum is over all pores invaded in the burst.

Figure 3 shows results obtained from simulations on
L, =200, L,=1500 lattices for different values of K. The
data were collected only after the front length stabilized.
The pressure jump size distribution n(I1) was assumed to
have a scaling form

a(m) =0~ (M/n*)(nk) 7, ()

where TM*~(nK) ™7 The crossover function f(x),
which is a constant for x <1 and vanishes quickly as
x— oo, is plotted in Fig. 3. The best fit was obtained for
7=1.30%0.05 and a =0.3 £0.05.

The exponents 7 and a can be expressed by static ex-
ponents of percolation and invasion percolation. The ar-
guments for these relations use the one-to-one correspon-
dence between our capillary pressure pc,p and the fraction
of occupied sites in normal percolation. This correspon-
dence is caused by our uniformly distributed capillary
pressure thresholds. The geometric size of the bursts in
terms of the number of invaded sites is roughly related to
the pressure jumps by s=IIn/K. This gives a scaling
form for the distribution of geometric burst sizes: n(s)
=5 "7f(s/s*), where s* is the characteristic burst size.
In the following we assume that the size of the lattice is
much larger than the characteristic length introduced by
the capacitive volume effect.

A parallel argument to that of Roux and Guyon for the
size distribution exponent [8] 7 of invasion percolation
with trapping applies also in our case. We define the
burst capillary thresholds in our simulations as the sub-

()

set of capillary threshold pressures at which a burst
starts. The burst capillary thresholds are distributed nar-
rowly around p. when Kny— oo, which is the limit where
the pressure does not decrease during a burst and the
burst size distribution is a power law as in normal in-
vasion percolation. Using that all bursts start at p. in
this limiting case and that our simulations have a dif-
ferent trapping rule than that of Roux and Guyon, we ob-
tain [8] 7=—D,/D+D/D'(t —1)+1=1.35, where D, is
the fractal dimension of the external perimeter, D'=1.89
is the fractal dimension of invasion percolation without
trapping, and 7 =2.07 is the cluster size distribution ex-
ponent for percolation. The characteristic burst size s*
and the corresponding characteristic linear burst size
s*'P depend on the strength of the capacitive volume-
pressure effect and the length of the absorbing front.
Considering bursts starting at the critical pressure p,
[16], the pressure decreases from p, as pores are invaded,
and we expect the crossover length to be visible when the
correlation length & is equal to the characteristic extent of
bursts. This corresponds to the pressure drop IT:

MY~ —peap) "~ (s/nK) "V ~E~5"P

(v=1.34 is the correlation exponent for percolation [16]
and D =1.82 is the measured fractal dimension [9] of the
invasion percolation cluster). The scaling of a typical
cluster size and pressure jump thus becomes

s*=(an)vD/(l+vD), n*=(an)—l/(|+vD), (3)

where the numerical value of a=1/(1+vD) is 0.29 as
observed.

Figure 2 shows the exponential and corresponding nu-
merical burst capillary pressure distributions. We have
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FIG. 3. Crossover function for the pressure jump distribution. The five curves correspond to K =0.01, 0.1, 1, 10, and 100. For
each value of K the points represent averages over five independent simulations on 200x 1500 lattices. Inset: The exponential re-

gime, in detail, for K =0.1 and K =1.
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estimated the experimental value of K from the slope of
the experimental pressure to time curve. The water-air
front is initially flat, giving n,=100 for the first buildup
regions. The extraction rate gives 0.0486¢ pores invaded
during an interval 8¢. The pressure differences measured
in the experiment cannot be directly compared to pres-
sure differences in the simulations, since the capillary
pressure threshold distribution of the porous medium is
unknown. We measure burst capillary threshold values
in simulations in the range 0-0.55, while the correspond-
ing experimental pressures are approximately in the
range of 0-16 mm H,O. If we assume a uniform capil-
lary threshold distribution in the porous medium, we esti-
mate the following relation between the experimentally
measured pressures p and the corresponding simulation
pressures peap: Peap =0.034p/(mm H,0). By comparing
the burst capillary threshold distributions for simulations
and experiments we find a good consistency and conclude
that the capillary threshold distribution in the porous
medium is well described by a uniform distribution in the
range of pressures that dominates the process. Using the
linear relation between simulated and experimental pres-
sures, we obtain K=0.2.

We performed 100 simulations where we used this
value of K, a lattice of L, =100 and L, =200 correspond-
ing to the experimental model, and stopped the simula-
tions after 750 bursts, which is the typical total number
of bursts in an experiment. Figure 2 shows the exponen-
tially decreasing cumulative pressure jump distributions
for three different experiments together with simulations
and an exponentially decreasing curve. Pressures P =I1/
(I are divided by (IT) which is the mean value of the
pressure jumps I1 above the experimental resolution of
0.1 mm Hzo.

Also the cumulative distributions of At, the intervals
between subsequent bursts, are shown in Fig. 2 for both
experiments and simulations, using the dimensionless
times 7=At/(At). (At) is the mean value of the buildup
time, averaged over all times larger than the time it takes
to build up the pressure corresponding to a capacitive
volume of one typical pore volume. For times shorter
than this the buildup time distribution is not expected to
be correct because it will strongly depend on the distribu-
tion of the detailed pore volume.

In conclusion, we find close agreement between simula-
tions and experiments. Since both the pressure jump dis-
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tribution and the buildup time distribution show exponen-
tial decay, we conclude that the capillary pressure in the
experiments depends strongly on the capacitive interface
volume and that the experiments are in the crossover re-
gime. We find a fractal structure that arises by a dynam-
ic process that is not characterized by power laws, but by
exponential functions. In the limit when Kn,— oo the
dynamics is governed by power-law distributions.
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