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The origin and consequences of pseudospin symmetry in nuclear physics, which is exact for an oscilla-
tor potential with one-body orbit-orbit (v;) and spin-orbit (vi) interaction strengths in the ratio
u=2vy/vi;,=0.5, are considered. Specifically, the v;; = 4v; condition is consistent with relativistic
mean-field results and a pseudo LS coupling scheme. When deformation dominates, pseudospin extends
to pseudo SU(3), which is applicable to superdeformation.

PACS numbers: 21.60.Fw, 21.60.Cs, 21.60.Ev

(1) Introduction.—The three-dimensional isotropic
harmonic oscillator (Ho) augmented with the one-body
spin-orbit (/- s) and orbit-orbit (/2) interactions,

H=H0+V/_,1'S+V[/12, (1)

is a good approximation for the nuclear single-particle
Hamiltonian. The /2 term pushes high angular momen-
tum states down (v, <0) relative to those with lower /
values while the /-s term (coupling spatial and spin de-
grees of freedom) is required to achieve shell closures
(vis <0) at the magic numbers. Unfortunately, v, is so
large that the /s term destroys the oscillator SU(3) sym-
metry for all but light (4 <28) nuclei, rendering it of lit-
tle value in attempts at unraveling the structure of
heavier systems.

This paper shows that this situation gives way to a
much more favorable one, because for medium and heavy
(4=2100) nuclei, v;;=4v; or the Nilsson parameter
u=2vy/vi;=0.5. As a consequence, the level splitting
generated by the /-5 and /2 interactions can be duplicated
by a pseudo-oscillator Hamiltonian plus a pseudo /2 term,
with (at most) a small symmetry-breaking residual pseu-
do /- s interaction [1-3]. Since common residual interac-
tions are pseudospin scalar operators, a many-particle
pseudo LS-coupled shell-model scheme can be employed,
and the basis truncated to leading pseudospin sym-
metries, without losing important physics. In addition,
the pseudo LS scheme extends to pseudo SU(3) when de-
formation dominates [4].

(2) Spherical Nilsson scheme.—In the single-particle
picture, the pseudospin concept means a division of the
total particle angular momentum into pseudo (j=1I+§)
rather than normal (j=I+s) orbital and spin parts, so
I+ § =IF §. The physical significance of this elemen-
tary transformation is illustrated in Fig. 1, where eigen-
values of H are plotted as a function of u. For u=0.5,
the pairs with j=/+ % and j=(+2)— % are degen-
erate for all | values. Furthermore, the splitting of the
degenerate pairs follows a g+ rule, where [ is the
average angular momentum of the pair: I=3+U+(
+2)1=I/+1. This mapping of the (/s)j-coupled single-
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particle states onto (/§)j pairs defines a special (nor-
mal« pseudo) unitary transformation: U=2(n-£—2I-s
+3) ~2(¢-5), where the 5 and & respectively create and
annihilate oscillator quanta [5,6).
The single-particle Hamiltonian transforms under this
mapping as follows:
rma
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FIG. 1. Eigenvalues of the single-particle Hamiltonian
H/hw=n—xQl-s+ul?), where u=2vy/vi; and x=—v;/
2hw= t A~'3, for the specific value x=005 and 0.0
<pu=<10. The j=(+2)— 5 and j=I+ } levels are degen-
erate for u=0.5, which can be duplicated by the simpler
pseudo-oscillator Hamiltonian H/h& =7 — xul’ when hé=ho
and A=n—1 with /=/—1=A,i—2,...,1 or 0 and §=7.
Each pseudoshell is accompanied by a unique parity intruder
level (shown as dashed) with j=(n+1)+ 5 =n+ 3 from the
shell above. As indicated, empirical results place medium and
heavy mass nuclei close (ux~0.6 and p,~0.4) to the u=0.5
value require for exact pseudospin symmetry.
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=Ho+ vl §+ vyl %, has the same excitation spectrum as
the normal one (H =Ho+ v, /-s+v;l?) when hé =ho,
viy =4vy — vy, and vy =vy. This transformation is im-
portant, because v;; = 4vy, so vj, = 0. As specifically in-
dicated in Fig. 1, u,=0.4 and u,=0.6 (v for neutrons
and 7 for protons); this places medium and heavy nuclei
close to the exact pseudospin limit (4 =0.5) of the theory
(cf., e.g., Ref. [7]). Indeed, the average u value is almost
exactly 0.5. For these nuclei, the familiar single-particle
shell-model Hamiltonian can therefore be replaced by a
less familiar, but equivalent, pseudo form which is in-
herently simpler due to its much smaller spin-orbit term.
The pseudospin scheme maps the normal-parity
(= 1, %, ...,n— 1) levels of the nth oscillator shell
onto levels of a pseudo-oscillator shell with i=n —1. For
example, the (3s|/2,2a’3/2,2d5/2,lgz/g) levels of n=4 are
mapped onto the (25,/2,253/2,1f5/2,1f72) orbitals of
ii=3. The j=n+ % orbital (l1gys for n=4) defects
from the valence space and joins the shell below, while
the j=(+1)+ % =n+3 level (1h,/, from the n=5
shell for the n=4 case) intrudes into the valence space
from the shell above. Unique-parity intruder config-
urations couple to normal-parity states only through exci-
tations involving pairs of particles and are therefore usu-
ally handled as weak-coupled, direct-product structures.
(3) Relativistic mean-field results.—The pseudospin
concept may be better understood by comparing an intui-
tive result for v, with relativistic nuclear mean-field pre-
dictions for v;,. The origin of the [’ term in H is in the
flatness of the mean field in the interior region, as
compared with the quadratic oscillator form [V (r)
=1 Mw?r’). In the large mass limit (4-> ) the po-
tential approaches that of a spherical well of finite depth.
If this spherical well is replaced by one with an infinite
depth, the single-particle energies are given by

Eu=(h*2MR*)x} (3)

where M is the nucleon mass, R is the radius of the well,
and the x,; are zeros of spherical Bessel functions. These
zeros are approximately given by the result x7 = [($n
+1)x]>=1(/+1). Table I illustrates the dependence of
xy on [ for the n=4 case. The results show that the
splitting follows an /(/+1) rule. Therefore,

vi=—h>*2MR?>. (4)

A determination of vy using the Klein-Gordon equation

TABLE 1. Zeros (xw) of spherical Bessel functions and
differences of their squares (x7 —x,4) compared with the sim-
ple /(/+1) approximation for the n =4 case.

n I Xnil 7 X3 X0 — xm 10+1)
4 0 3.000 88.83 0.00 0
4 2 2.895 82.72 6.11 6
4 4 2.605 66.98 21.85 20
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leads to the same conclusion when the kinetic energy is a
small fraction of the nucleon mass.

Next, consider the strength of the spin-orbit coupling.
Starting with the usual Dirac equation (with only the
time component of the scalar and vector potentials taken
into account) and using a nonrelativistic reduction of the
relativistic mean-field theory, the spin-orbit interaction is
given by

[s. (5)

In this expression, p and pg are respectively the nucleon
density at radius r and the nuclear matter density. The
dimensionless quantity B in (5) is related to the strength
of the scalar and vector coupling constants. The spin-
orbit strength vj; can be obtained from the average of Vi,
over the region inside radius R,

_ —h’ 6B

= . (6)
2JMR? 1 —B

Vis

In determining this result, the fact that dp/dr vanishes
everywhere, except near the surface of the nucleus, has
been used.

It follows from Egs. (4) and (6) that the ratio

2vy _1—B

K 3B )
is independent of mass number. Furthermore, to obtain
1 =0.5 requires B=0.4. In the simplest version of the
theory, B =% (B, + B.), with its scalar (i =s) and vector
(i=v) components given by B, =g’po/u?Mc?, where u;
and g; respectively denote meson masses and coupling
constants. Using this expression for B, the Nambu-
Jona-Lasinio (NJL) model [8,9]— which in its modern
form starts with massless quarks and generates hadron
masses out of the vacuum by spontaneous symmetry
breaking, and which has also been used to predict the
coupling constants and masses appearing in a relativistic
nuclear field theory— gives the result g =0.686 shown in
Table 11. As also shown in the table, results for the origi-
nal Walecka model [10] and a derivative coupling model
due to Zimanyi and Moszkowski [I1]—which gives a
more realistic equation of state for nuclear matter, which

TABLE II. Comparison of u =2vy/vi, values for various rel-
ativistic mean field theories. Exact pseudospin symmetry re-
quires 4 =0.5. Results given are for pp=0.16 nucleon/fm* and
a nuclear binding energy of —16 MeV.

B, B. B u
NJL® 0.339 0.316 0.327 0.686
Walecka * 0.487 0.368 0.427 0.447
Zimanyi® 0.252 0.088 0.344 0.635
“B=1(B,+B.).

*8 =% B,+ 2B, (including recoil and exchange effects).
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includes the effect of nucleon recoil, and when extended
to include exchange correlations—also yield reasonable
results for u.

(4) Pseudospin dynamical symmetry.— A consequence
of good pseudospin symmetry is that a LS coupling
scheme (with distinct S multiplets that are decoupled and
ordered) is expected to be a good starting point for
describing heavy-nuclei, many-particle phenomena. The
m-particle valence spaces (i =m, for protons and
m =r, for neutrons, which occupy different major shells)

divide into subspaces: S =0,1,2,3,...,Smax for /m even
or §S=13 . 3 voosSma for s odd, with S
=min($ m, -m) where N=% i+ 1)(A+2) is the

pseudoshell degeneracy. The proton-neutron LS-coupled
states (@ labeling L multiplicity), |‘I'J)—|[(a,,L,,,a L )L
x($,$)51%), with S,=S,.. S.=S,,. and $=Smn
=|S,.—S,.|, are expected to dommate because realis-
tic interactions favor pseudospace symmetric (pseudospm
antlsymmetrlc) configurations.

This truncation to the lowest S,,, S and S multiplets is
usually insufficient to reduce the model space to a reason-
able and workable size. Fortunately, another symmetry
for strongly deformed nuclei can be invoked to effect a
further truncation. Just as for light nuclei, SU(3) of the
pseudo oscillator which lies between U(N) and SO;(3)
can be used to organize the states within each S multiplet
according to their deformation [12]. In this case the de-
formation is realized in terms of the pseudo (not normal)
space symmetry. Nonetheless, this gives rise to strongly
enhanced B(E?2) transition strengths, because the electric
quadrupole operators Qg and Qf are known to differ very

E 1S R gy i), S SRy i,);6 (M, ) K (LS) T} =

- %l”CZ(Xmljn) -
+C;LIL+H1)+CiK2+CrI(U+1).

This choice is consistent with a deformation reenforce-
ment principle which recognizes the favored configuration
to be the one with maximum overlap of maximally de-
formed proton and neutron spatial configurations. In (8),
C>(A,u) is the second-order SU(3) invariant with eigen-
value A2+ u?+Aau+3(+pu). An explicit form for an
operator that has K2 as its eigenvalue is known in the
limit L < [C>(\,1)1"2 [15]. The constants in (8) are re-
lated to the effective interaction. For example, the x’s are
given by the strengths of the quadrupole-quadrupole in-
teractions; the Cg¢’s are related to centroid separations of
the pseudospin multiplets; C; is the inertia parameter; Cg
determines the band splitting, etc. The J? term can be
replaced by L-S =+ [J2— S2] and used to fine tune
the placement of the L(L + I ) bands with respect to S.
When the pseudospin dynamical symmetry picture ap-
plies, there are L(L + 1) bands—one for each pseudospin
orientation—that differ in total angular momenta
(J=L+S) by integer (even 4 compared with even 4) or

A A
SU@3) ® SU?2)
A A
$0L(3) ® SU@R)

SU2)

FIG. 2. Group structure of the pseudospin dynamical sym-
metry model. The proton and neutrons fill different major
shells, and within_each of these subshells the structures
UQN)DUW)®SU;(2), with UW)DSUB3)DS0,(3), or-
ganize the allowed normal-parity configurations according to
their pseudospace deformation. The many-particle dynamics
insure that the most deformed of these lie lowest and the least
deformed highest. The SU(3) strong coupling limit, which is
motivated by a deformation reenforcement principle, likewise
organizes the combined proton-neutron space according to its
deformation. Particles distributed in the unique parity intruder
orbitals tend to reenforce this picture.

little from one another [13].

Of the various coupling schemes that can be built with
these group structures, the SUB) strong-coupling limit
shown in Fig. 2 is the most natural (cf. Ref. [14]). In the
dynamical symmetry limit, when the interaction is ex-
pressed solely in terms of group invariants, the corre-
sponding eigenvalue spectrum is given by

Cp fitnt Cy i1, +Cs S(Se+ D+ C5 S S, + 1) +C5S(S+1)

%IVCZ(XVJIV) - ;_XCZ(XJI)

(®)

half-integer (odd 4 with even 4) amounts. This seems to
affirmatively answer the question of “whether low-lying
collective states having alignment 1 would occur in a nu-
cleus with rather good pseudospin symmetry” [16]. In
considering this matter, it is important to emphasize that
the alignment can be either proton or neutron in origin,
or a combination. In particular, a consequence of good
pseudospin symmetry is the prediction of 2S+ | identical
L(L+l) bands with J values given by J = L—S in the
first, L —S+1 in the second, ...,L+S in the last. The
model further predicts (since on the average u,> 0.5 and
1, <0.5) that in odd-A proton nuclei the J =L+ ¥ series
should fall below the J=L — ¥ sequence and vice versa
for odd A neutron systems. Indeed, for the '3 Tbge case
(S =1) an excited superdeformed band of the J=L+
has been reported and taken as evidence for the goodness
of the pseudo SU(3) picture [17].

(5) Conclusions.— The origin and consequences of the
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u=2vy/v;; = 0.5 result was examined. Actual estimates
for u are (0.60 and 0.65) for protons with (50 < Z <82
and Z>82), and (0.42 and 0.33) for neutrons with
(82 < N <126 and N > 126), respectively. These values
are sufficiently close to 4 =0.5 that the many-particle ex-
tension of the single-particle picture is expected to have
good total pseudospin symmetry, provided the residual in-
teraction is a pseudospin scalar operator. Examples in-
clude pairing, the surface delta interaction, and 00,
which generates L(L+1) rotational sequences in the
decoupled pseudo spaces. At a more fundamental level,
good pseudospin symmetry was shown to be consistent
with relativistic mean field results for v;; and vy.

Further consequences of good pseudospin symmetry
were noted; particularly, the appearance of identical
bands. Strong deformation in the pseudo-space part of
the many-particle basis gives rise to L(L+1) rotational
sequences for each of the 25+ | orientations of the pseu-
dospin. That these bands yield strongly enhanced B(E2)
strengths follows because Qr = Q. A prediction of the
theory is that many additional, strongly deformed bands
should be found when the detectors with high efficiency
and multiple-coincidence capability that are currently un-
der construction come on line.

We have assumed that the particles in the intruder lev-
els do not affect the dynamics in a significant way. This
assumption is justified so long as intruder pair alignment
(common in normally deformed systems) which results in
backbending, accompanied by weakened E2 transition
strengths, is not observed. Superdeformed rotational se-
quences appear to conform to this assumption, namely,
intruder level particles apparently keep an internal struc-
ture that changes (at most) slowly as a function of in-
creasing angular momentum of the system.
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