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E„t =(/t /2MR )x (3)

where M is the nucleon mass, R is the radius of the well,
and the x„/ are zeros of spherical Bessel functions. These
zeros are approximately given by the result x„t = [( —. n

+ I ) tr]
-' —l(I + I ). Table I illustrates the dependence of

x„/ on I for the n=4 case. The results show that the
splitting follows an I(I+ I ) rule. Therefore,

vg = —trt /2MR (4)

=Ho+ v/, I.s+ v//l, has the same excitation spectrum as
the normal one (H =Ho+ vt, l s+ vgl ) when hco =hcu,
v/, =4v// —v/„and v//

= v//. This transformation is im-

portant, because v/, =4v//, so v/, =0. As specifically in-

dicated in Fig. I, p, =0.4 and p =0.6 (v for neutrons
and tr for protons); this places medium and heavy nuclei
close to the exact pseudospin limit (p =0.5) of the theory
(cf., e.g. , Ref. [7]). Indeed, the average p value is almost
exactly 0.5. For these nuclei, the familiar single-particle
shell-model Hamiltonian can therefore be replaced by a
less familiar, but equivalent, pseudo form which is in-

herently simpler due to its much smaller spin-orbit term.
The pseudospin scheme maps the normal-parity

(j= —. , -", . . . , n —-' ) levels of the nth oscillator shell

onto levels of a pseudo-oscillator shell with n =n —1. For
example, the (3s~/q, 2d3/2, 2ds/q, I g7/2) levels of n =4 are
mapped onto the (2p ~/z, 2p3/2, 1fs/z, If7/2) orbitals of
n =3. The j=n+ 2~ orbital (Ig9/2 for n =4) defects
from the valence space and joins the shell below, while
the j=(n+ I)+ —' =n+ —' level (Ih~~p from the n =5
shell for the n =4 case) intrudes into the valence space
from the shell above. Unique-parity intruder config-
urations couple to normal-parity states only through exci-
tations involving pairs of particles and are therefore usu-

ally handled as weak-coupled, direct-product structures.
(3) Relativistic mean fteld res-ults The.—pseudospin

concept may be better understood by comparing an intui-
tive result for v// with relativistic nuclear mean-field pre-
dictions for v/, . The origin of the l term in H is in the
flatness of the mean field in the interior region, as
compared with the quadratic oscillator form [V(r)
= —,

' Mcu-'r-']. In the large mass limit (A — ee) the po-

tential approaches that of a spherical well of finite depth.
If this spherical well is replaced by one with an infinite

depth, the single-particle energies are given by

leads to the same conclusion when the kinetic energy is a

small fraction of the nucleon mass.
Next, consider the strength of the spin-orbit coupling.

Starting with the usual Dirac equation (with only the
time component of the scalar and vector potentials taken
into account) and using a nonrelativistic reduction of the
relativistic mean-field theory, the spin-orbit interaction is

given by

h'2 d
V/

2M r dr I —Bp/po
I s. (5)

In this expression, p and po are respectively the nucleon

density at radius r and the nuclear matter density. The
dimensionless quantity B in (5) is related to the strength
of the scalar and vector coupling constants. The spin-

orbit strength v/, can be obtained from the average of V/,

over the region inside radius R,
—6 68

2MR-' 1
—B

(6)

In determining this result, the fact that dp/dr vanishes

everywhere, except near the surface of the nucleus, has
been used.

It follows from Eqs. (4) and (6) that the ratio

2v// 1
—8

p =
v/, 38

(7)

is independent of mass number. Furthermore, to obtain

p =0.5 requires 8=0.4. In the simplest version of the
theory, B = —,

' (B,+B,, ), with its s.calar (i =s) and vector

(i =t ) components given by B; =g; po/p; Mc', where p;
and g; respectively denote meson masses and coupling
constants. Using this expression for 8, the Nambu-
Jona-Lasinio (NJL) model [8,9]—which in its modern

form starts with massless quarks and generates hadron
masses out of the vacuum by spontaneous symmetry

breaking, and which has also been used to predict the

coupling constants and masses appearing in a relativistic
nuclear field theory —gives the result p =0.686 shown in

Table II. As also shown in the table, results for the origi-
nal Walecka model [10] and a derivative coupling model

due to Zimanyi and Moszkowski [11]—which gives a

more realistic equation of state for nuclear matter, which

A determination of v// using the Klein-Gordon equation

TABLE I. Zeros (x„/) of spherical Bessel functions and

differences of their squares (x„p x„I) compared with the sim-

ple I(l+ 1) approximation for the n =4 case.

TABLE II. Comparison of p =2vg/vir, values for various rel-

ativistic mean field theories. Exact pseudospin symmetry re-

quires p =0.5. Results given are for po=0. l6 nucleon/fm and

a nuclear binding energy of —16 MeV.
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0.344

"B= —, (B, + B,.).
"B= —, B, +2B,. (including recoil and exchange effects).
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includes the effect of nucleon recoil, and when extended

to include exchange correlations —also yield reasonable
results for p.

(4) Pseudospin dynamical symmetry. —A consequence
of good pseudospin symmetry is that a LS coupling
scheme (with distinct S multiplets that are decoupled and

ordered) is expected to be a good starting point for
describing heavy-nuclei, many-particle phenomena. The
m-particle valence spaces (m =m, for protons and

m =m„ for neutrons, which occupy diff'erent major shells)

divide into subspaces: S =0, ),2, 3, . . . , S „. , for m even

or S= p, 2, p, . . . , S~x for Tpl odd, with S~gx
=min( —,

'
m, N —

—,
' m), where N= —,

' (n+1)(n+2) is the
Ay

pseudoshell degeneracy. The proton-neutron LS-coupled
states (a labeling L multiplicity), ~%' ) =t[(a,L„a,L,)
x (S„S„)] ), with S,=S~.

,„, S„=S„,, and S =Sm;„
= tS~, —S, , t, are expected to dominate, because realis-

tic interactions favor pseudospace symmetric (pseudospin
antisymmetric) configurations.

This truncation to the lowest S„S„andS multiplets is

usually insufficient to reduce the model space to a reason-

able and workable size. Fortunately, another symmetry
for strongly deformed nuclei can be invoked to effect a
further truncation. Just as for light nuclei, SU(3) of the

pseudo oscillator which lies between U(N) and SOt-(3)
can be used to organize the states within each S multiplet

according to their deformation [12]. In this case the de-

formation is realized in terms of the pseudo (not normal)

space symmetry. Nonetheless, this gives rise to strongly
enhanced B(E2) transition strengths, because the electric
quadrupole operators Qq and Q~ are known to differ very

Elm,S,(A,„P,);mQ, (k„p„);p(l.,p)K(LS)JI = C„, m,+-

UK(2NK)

[ UK(NK) UK(2) ]

[ S UK(3) S UK(2) ]

Uv(2Nv)

[ Uv(Nv) Uv(2) ]

[ S Uy(3) S Uv(2) ]

[ S UK(3) S Uy(3) ]

S U(3)

SOL(3)

[ SUK(2) SUv(2) ]

ts) S U(2)

(3) S U(2)

SUJ(2)

FIG. 2. Group structure of the pseudospin dynamical sym-

metry model. The proton and neutrons fill different major
shells, and within each of these subshells the structures
U(2N) DU(N) SUg(2), with U(N) &SU(3) DSO;(3), or-

ganize the allowed normal-parity configurations according to
their pseudospace deformation. The many-particle dynamics
insure that the most deformed of these lie lowest and the least
deformed highest. The SU(3) strong coupling limit, which is

motivated by a deformation reenforcement principle, likewise

organizes the combined proton-neutron space according to its
deformation. Particles distributed in the unique parity intruder
orbitals tend to reenforce this picture.

little from one another [13].
Of the various coupling schemes that can be built with

these group structures, the SU(3) strong-coupling limit
shown in Fig. 2 is the most natural (cf. Ref. [14]). In the
dynamical symmetry limit, when the interaction is ex-
pressed solely in terms of group invariants, the corre-
sponding eigenvalue spectrum is given by

C.- m, +C; S,(S.+ I )+C; S,(S,+ I )+C;S(S+ I )

——,
' g~cp(k, p, ) —

—,
' gvc2(k„p, ) ——,

' gc2(z, p)

+CLL(L+ I )+CtiK +CJJ(J+ I ) . (8)

This choice is consistent with a deformation reenforce-
ment principle which recognizes the favored configuration
to be the one with maximum overlap of maximally de-
formed proton and neutron spatial configurations. In (8),
Cq(l, ,p) is the second-order SU(3) invariant with eigen-
value )I, +p +1Ip+3()L,+p). An explicit form for an

operator that has K as its eigenvalue is known in the
limit L«[C2(k„p)]'t [15]. The constants in (8) are re-
lated to the effective interaction. For example, the g's are
given by the strengths of the quadrupole-quadrupole in-

teractions; the Cg's are related to centroid separations of
the pseudospin multiplets; Cl- is the inertia parameter; C~
determines the band splitting; etc. The J term can be
replaced by L.S= —,

' [J —L —S ] and used to fine tune
the placement of the L(L+ I ) bands with respect to S.

When the pseudospin dynamical symmetry picture ap-
plies, there are L(L+ I ) bands —one for each pseudospin
orientation —that differ in total angular momenta
(J =L+S) by integer (even A compared with even A) or

t half-integer (odd A with even A) amounts. This seems to
affirmatively answer the question of "whether low-lying

collective states having alignment 1 would occur in a nu-

cleus with rather good pseudospin symmetry" [16]. In

considering this matter, it is important to emphasize that
the alignment can be either proton or neutron in origin,
or a combination. In particular, a consequence of good
pseudospin symmetry is the prediction of 2S+ l identical
L(L+ I) bands with J values given by J=L —S in the
first, L —S+1 in the second, . . . , L+S in the last. The
model further predicts (since on the average p & 0.5 and

p, & 0.5) that in odd-A proton nuclei the J=L+ —,
' series

should fall below the J=L —
2 sequence and vice versa

for odd-A neutron systems. Indeed, for the '6qTb86 case
(S= —,

' ) an excited superdeformed band of the J=L+ —,
'

has been reported and taken as evidence for the goodness
of the pseudo SU(3) picture [17].

(5) Conclusions The origin an.d—consequences of the
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Js=2villvis=0. 5 result was examined. Actual estimates
for p are (0.60 and 0.65) for protons with (50 & Z & 82
and Z & 82), and (0.42 and 0.33) for neutrons with

(82 & IV & l26 and IV & 126), respectively. These values
are sufficiently close to p =0.5 that the many-particle ex-
tension of the single-particle picture is expected to have

good total pseudospin symmetry, provided the residual in-

teraction is a pseudospin scalar operator. Examples in-

clude pairing, the surface delta interaction, and Q Q,
which generates L(L+ I) rotational sequences in the
decoupled pseudo spaces. At a more fundamental level,

good pseudospin symmetry was shown to be consistent
with relativistic mean field results for vI, and vjl,

Further consequences of good pseudospin symmetry
were noted; particularly, the appearance of identical
bands. Strong deformation in the pseudo-space part of
the many-particle basis gives rise to L(L+ I) rotational
sequences for each of the 2S+ 1 orientations of the pseu-
dospin. That these bands yield strongly enhanced 8(E2)
strengths follows because QE = Q~. A prediction of the
theory is that many additional, strongly deformed bands
should be found when the detectors with high efficiency
and multiple-coincidence capability that are currently un-

der construction come on line.
We have assumed that the particles in the intruder lev-

els do not aff'ect the dynamics in a significant way. This
assumption is justified so long as intruder pair alignment
(common in normally deformed systems) which results in

backbending, accompanied by weakened E2 transition
strengths, is not observed. Superdeformed rotational se-

quences appear to conform to this assumption, namely,
intruder level particles apparently keep an internal struc-
ture that changes (at most) slowly as a function of in-

creasing angular momentum of the system.
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