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Experimental Measurements of the Roughness of Brittle Cracks
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We record the height of the crack surface as a function of position along one-dimensional cuts orthog-

onal to the crack for six different brittle materials.

We find that the width w of this one-dimensional

trace as a function of its length L behaves as w~L¢, where {=0.87(7). This result is in agreement with
recent conjectures of a universal roughness exponent ¢ for these materials.

PACS numbers: 62.20.Mk, 05.40.+j, 64.60.Ht

Even though the fractures appearing in different ma-
terials may look very different from each other, much
work has been invested over the last five years searching
for features in fracture that are quantitatively universal.
The guiding idea behind these previous studies has been
the similarities with critical phenomena. These results
have been based mostly on theoretical considerations and
computer experiments (see Ref. [1] for a recent review).
In the spirit of this guiding idea, it was recently suggested
that scaling of the roughness of brittle cracks is universal
[2]. We imagine a one-dimensional cut of length L is
made through the fracture surface. The height y as a
function of position along the cut, x, is then measured.
The width of the crack is defined as w=({y2) —(y)?)'/2,
where ()= f§y(x)dx/L, and (y?) =[y(x)?dx/L. The
suggestion of Ref. [2] was then that

w~L¢, (1)

where { is a universal exponent independent of the ma-
terial. Equation (1) was tested numerically in a two-
dimensional fuse model [3], and it was found that ¢=0.7
to within 10% accuracy for a range of different distribu-
tions of fuse strengths, i.e., different disorders. It was
furthermore argued in this paper that there might be a
connection between brittle fracture and the problem of
directed polymers embedded in and interacting with a
random medium [4]. Such a connection predicts the
roughness exponent to be =% in two dimensions.

The universal scaling of the roughness of cracks has
many practical consequences. We mention, for example,
that the permeability of oil reservoirs is strongly in-
fluenced by the presence of cracks. The roughness of the
cracks will result in a length-dependent permeability of
the cracks which is different from the simple opening of a
straight crack.

Recently, the roughness of ductile cracks were studied
experimentally by Bouchaud, Lapasset, and Planes [S].
These authors worked with aluminum alloys that received
different heat treatments, and found the roughness of the
cracks to follow Eq. (1) with a roughness exponent of

about £=0.8. Experiments have also recently been per-
formed on two-dimensional piles of collapsible tubes [6].
Here a roughness exponent of 0.7 was found. These ex-
periments come very close to the fuse model studied nu-
merically in Ref. [2].

In this Letter we present an experimental study of the
roughness of cracks appearing in different brittle materi-
als. We find a roughness exponent of ¢=0.87 +0.07.
This exponent varies little from material to material; see
Table I.

We studied six different brittle materials: (1) An Al-Si
alloy (AA4253), (2) ARNE steel AISI standard Ol
cooled by liquid nitrogen, (3) a graphite sample, (4) por-
celain used in high-voltage insulators, (5) bakelite, and
(6) plaster of Paris. Samples (1) and (2) were well-
defined materials, while samples (3) to (6) were more or
less haphazardly chosen. The samples had either a circu-
lar or rectangular cross section measuring (1) 10%20
mm, (2) 20 and 25 mm, (3) 51 mm, (4) 25 to 30 mm,
(5) 9%80 mm, and (6) 20 to 25 and 85 mm. They were
broken by applying a strong shear. No attempts were
made to force the cracks to end at certain positions on the
surface of the materials, but a small notch was made in
order for the crack to start at a well-defined position.

The crack surface was then traced along a straight line

TABLE I. The roughness exponents ¢ for the different brittle
materials studied. The first column contains the roughness ex-
ponents determined from the power spectra, while the second
column contains the roughness exponents determined by the re-
turn probability histograms. The accuracy of the exponents
presented in this table is roughly 10%.

Power spectrum  Return probability

Al-Si alloy AA4253 (1) 0.82 0.96
ARNE steel (2) 0.88 0.91
Graphite (3) 0.90 0.90
Porcelain (4) 0.75 0.76
Bakelite (5) 0.84 0.89
Plaster of Paris (6) 0.95 0.94
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by a slightly weighted needle using essentially the gram-
mophone pickup principle. A mirror was attached to the
needle, and a laser beam reflected from it onto a single
axis continuous position-sensitive photodetector USD
LSC 30-D. The mechanism holding the needle was sta-
tionary, while the sample was moved in steps of 0.025
mm by a stepping motor. A height increase of the needle
produced a rotation of the mirror which introduced a
change in the laser spot position on the detector. As the
laser beam moved across the active area of the sensor,
output currents were generated which were proportional
to the distance of the laser spot to the end contact of the
detector. The trace of the crack was then recorded as
measurements of the output current of the position-
sensitive photodetector for each position of the sample.
In order to estimate the resolution of our apparatus, we
traced a known structure with steps of height 0.11 and
0.22 mm. From the obtained trace, we estimate our vert-
ical resolution to be 0.005 mm.

We made seven measurements, each containing 700
points for sample (1); 11 measurements, each containing
from 400 to 600 points for sample (2); 10 measurements,
with 1000 data points for sample (3); 27 measurements,
with 450 to 1000 data points for sample (4); 15 measure-
ments, with 700 to 1000 data points for sample (5); and
40 measurements, with 300 to 1200 data points for sam-
ple (6).

The trace from a given measurement of a given sample
was recorded as h(x) vs x. As pointed out above, we did
not attempt to “restrain” the crack to start or end at a
particular £(0) or h(L) value. However, this may intro-
duce a drift in the h values which may affect the mea-
surements of the roughness. In order to take this into ac-

10 T

5
& 0f.
B0 o
2

50

410 ! | 1 J
25 20 15 -0 05 00

log, f

10

FIG. 1. The power spectrum P(f) as a function of the fre-
quency f for each of the six samples. The data have been
moved apart for clarity: Sample (1) corresponds to the lowest
data set; the others follow from bottom to top. The straight
lines are least-squares fits to the scaling region of each power
spectrum. The corresponding roughness exponents are listed in
Table I.
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count, we defined an “average drift” as d(x)=[h(L)
—h(0)]x/L. This average drift was then subtracted
from the data to give y(x) =h(x) —d(x). We based our
data analysis on the y(x) vs x data.

We determined the roughness exponents ¢ for each
sample through two very different methods: One based
on the power spectrum of the trace y(x); the other based
on the histogram of return probability. In order to esti-
mate the accuracy of these two methods, we tested them
on artificially generated fractal landscapes with different
known roughness exponents [7].

The power spectrum P(f) is the Fourier transform of
the correlation function {y (x +Ax)y(x)). The power-law
equation (1) translates into P(f)~f "'~ [7]. Each
trace y(x) from each measurement of each sample was
split into (slightly overlapping) pieces containing 256
consecutive data points each. The procedure of trans-
forming h(x)— y(x) had to be done on each of these
pieces in order to avoid aliasing. We then performed an
arithmetic average over each of the obtained power spec-
tra. In Fig. 1 we show these averaged power spectra for
all six samples. The corresponding roughness exponents
are shown in Table I. The average value of the obtained
exponents is 0.86 1 0.06.

The return probability histogram, R(A), is a measure-
ment of the probability that a height y appearing at a
given position x reappears for the first time at a position
x +A, averaged over all x. In this case, Eq. (1) translates
into R(A)~A~2%¢ [8]. Figure 2 shows R(A) averaged
over all measurements. The roughness exponents deter-
mined from the averaged return probability histograms
for all samples are listed in Table I. The average ex-
ponent based on these values is {=0.89 * 0.06, consistent
with that found by the power spectrum method.

Taking into account the 10% accuracy of the roughness
exponents measured for the various samples, we find that
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FIG. 2. The return probability histogram R(A) for each of
the six samples. The data are presented as in Fig. 1, and the
corresponding exponents are listed in Table I. A in this figure is
measured in units of 0.025 mm.
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our data are consistent with a wuniversal value for the
roughness exponent. Furthermore, comparing our results
to those found by Bouchaud, Lapasset, and Planes [5] for
ductile fracture, it is not ruled out that the roughness ex-
ponents are equal in both cases. This is especially
relevant in the case of our Al-Si sample (1) being more
brittle than the aluminum samples studied by Bouchaud,
Lapasset, and Planés, but still showing an appreciable
amount of ductility.

In Ref. [2] an analogy with the directed polymer in a
random-medium problem was made. Carrying this anal-
ogy over to two-dimensional cracks appearing in three-
dimensional materials, we consider the following problem:
We associate to each point r in the material a random
variable, “energy” e(r). Any surface & cutting the ma-
terial into an upper and lower piece then has a total ener-
gy Es=X,c se(r) associated with it. We then search for
the surface having the smallest total energy E associated
with it,

E=minEs=min 2, (r). )

§$ $ res

This random-surface problem is analogous to the ran-
dom-polymer problem in two dimensions, and the
minimum-energy surface will have a roughness of the
form of Eq. (1). However, the roughness exponent in this
case has been estimated by Kardar and Zhang [9] to be
£=0.50%0.08 by a numerical transfer-matrix technique,
while Halpin-Healy estimates {= 3 by an epsilon expan-
sion [10]. Both estimates are appreciably smaller than
£=0.87 reported in the present Letter for the roughness
of brittle cracks, or 0.8 for the roughness of ductile cracks
[51.

Ignoring the discrepancy between the estimates for the
random-surface roughness exponent of Refs. [9,10] and
the experimentally measured crack roughness exponents,
we recapitulate the two arguments presented in Ref. [2]
why the random-polymer (in the present case, random-
surface) problem should be relevant for the crack rough-
ness problem. In the first one, we may think of e(r) as
the local energy necessary to create a microcrack at posi-
tion r. If we then ignore the inhomogeneities in the stress
field induced by the fracture process, Eq. (2) follows as
the crack surface will develop in such a way that the total
energy necessary to create the crack is as small as possi-
ble. This argument has much in common with the cele-
brated Griffith criterion for crack development—also in
that it ignores the inhomogeneities of the stress field [1].
The second argument as to why the random-surface prob-
lem is relevant is to note that early in the fracture process
microcracks are generated in the material where it is
weak, rather than where the stress field is large, since the
stress field at this stage is rather uniform. If the weak
spots of the material are randomly distributed, so will the

microcracks that have been generated. At the late stages
of the fracture process when the stress distribution does
matter, it is plausible to assume that the local stress field
will be highest along the surface through the material
containing the largest area of voids, or equivalently the
smallest area of intact material. If we interpret (r) as
the local area of intact material, we arrive at Eq. (2) for
the surface containing the least area of intact material.
Since the stress field is highest in this surface, this is
where the final fracture will develop. Both of these argu-
ments contain large approximations, essentially ignoring
the strong local inhomogeneities that develop in the stress
field through the fracture process. Whether the ignored
effects are important enough to change the roughness ex-
ponents, or whether the theoretical measurements of the
random surface exponent are on the low side whereas our
measurements of the crack roughness exponent are on the
high side, so that they actually are equal, is at present im-
possible to determine. Further work to determine the
answer to this question is necessary.
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